Publications by authors named "Eleonora Maurizi"

The cornea is an ideal testing field for cell therapies. Its highly ordered structure, where specific cell populations are sequestered in different layers, together with its accessibility, has allowed the development of the first stem cell-based therapy approved by the European Medicine Agency. Today, different techniques have been proposed for autologous and allogeneic limbal and non-limbal cell transplantation.

View Article and Find Full Text PDF

Corneal endothelial dysfunction is a major indication for corneal transplantation. However, a global shortage of donor corneal tissues and risks associated with corneal surgeries have prompted exploration of alternative options, including tissue-engineered grafts or cell injection therapy. Nonetheless, these approaches require a controlled culture of primary human corneal endothelial cells (HCEnCs).

View Article and Find Full Text PDF

Background/purpose: Testing of dental materials when in contact with innate immune cells has been so far hindered by the lack of proper models. Human primary monocyte-derived macrophages (MDMs) would be an excellent option to this aim. However, the inability to detach them from the tissue culture plates contrast the possibility to culture them on biomaterials.

View Article and Find Full Text PDF

Human corneal endothelial cells are organized in a tight mosaic of hexagonal cells and serve a critical function in maintaining corneal hydration and clear vision. Regeneration of the corneal endothelial tissue is hampered by its poor proliferative capacity, which is partially retrieved in vitro, albeit only for a limited number of passages before the cells undergo mesenchymal transition (EnMT). Although different culture conditions have been proposed in order to delay this process and prolong the number of cell passages, EnMT has still not been fully understood and successfully counteracted.

View Article and Find Full Text PDF

Several ABO gene mutations are known to determine rare subgroups: these ABO variants are often responsible for weak or null phenotypes and may cause an incorrect determination of the serotype. Here we describe for the first time the phenotypic discrepancy of a rare B allele within the same Caucasian family that depends on the co-inheritance with A or H antigen. Blood samples from newborns, mothers, and grandmothers were analysed through routine serotype and genotype testing.

View Article and Find Full Text PDF

Nanoneedles can target nucleic acid transfection to primary cells at tissue interfaces with high efficiency and minimal perturbation. The corneal endothelium is an ideal target for nanoneedle-mediated RNA interference therapy aimed at enhancing its proliferative capacity, necessary for tissue regeneration. This work develops a strategy for siRNA nanoninjection to the human corneal endothelium.

View Article and Find Full Text PDF

Various ocular surface diseases are treated with blood-derived eye drops. Their use has been introduced in clinical practice because of their metabolite and growth factor content, which promotes eye surface regeneration. Blood-based eye drops can be prepared from different sources (i.

View Article and Find Full Text PDF

The corneal endothelium is the inner corneal mono-layered epithelium, fundamental for preserving corneal hydration and transparency. However, molecular mechanisms that regulate corneal endothelial cells (CEnCs), in particular regarding their proliferative capacity, have been only partially elucidated. CEnCs are quiescent in vivo and they easily undergo endothelial to mesenchymal transition (EnMT) in vitro.

View Article and Find Full Text PDF

This article explores examples of successful and unsuccessful regenerative medicine on human epithelia. To evaluate the applications of the first regenerated tissues, the analysis of the past successes and failures addresses some pending issues and lay the groundwork for developing new therapies. Research should still be encouraged to fill the gap between pathologies, clinical applications and what regenerative medicine can attain with current knowledge.

View Article and Find Full Text PDF

Corneal endothelial (CE) dysfunction is the main indication for corneal transplantation, an invasive procedure with several limitations. Developing novel strategies to re-activate CE regenerative capacity is, therefore, of fundamental importance. This goal has proved to be challenging as corneal endothelial cells (CEnC) are blocked in the G0/G1 phase of the cell cycle in vivo and, albeit retaining proliferative capacity in vitro, this is further hindered by endothelial-to-mesenchymal transition.

View Article and Find Full Text PDF

Autosomal dominantly inherited genetic disorders such as corneal dystrophies are amenable to allele-specific gene silencing with small interfering RNA (siRNA). siRNA delivered to the cornea by injection, although effective, is not suitable for a frequent long-term treatment regimen, whereas topical delivery of siRNA to the cornea is hampered by the eye surface's protective mechanisms. Herein we describe an attractive and innovative alternative for topical application using cell-penetrating peptide derivatives capable of complexing siRNA non-covalently and delivering them into the cornea.

View Article and Find Full Text PDF

Pterygium is a pathological proliferative condition of the ocular surface, characterised by formation of a highly vascularised, fibrous tissue arising from the limbus that invades the central cornea leading to visual disturbance and, if untreated, blindness. Whilst chronic ultraviolet (UV) light exposure plays a major role in its pathogenesis, higher susceptibility to pterygium is observed in some families, suggesting a genetic component. In this study, a Northern Irish family affected by pterygium but reporting little direct exposure to UV was identified carrying a missense variant in CRIM1 NM_016441.

View Article and Find Full Text PDF

Meesmann epithelial corneal dystrophy (MECD) is a rare autosomal dominant disorder caused by dominant-negative mutations within the KRT3 or KRT12 genes, which encode the cytoskeletal protein keratins K3 and K12, respectively. To investigate the pathomechanism of this disease, we generated and phenotypically characterized a novel knock-in humanized mouse model carrying the severe, MECD-associated, K12-Leu132Pro mutation. Although no overt changes in corneal opacity were detected by slit-lamp examination, the corneas of homozygous mutant mice exhibited histological and ultrastructural epithelial cell fragility phenotypes.

View Article and Find Full Text PDF

Purpose: Transforming growth factor beta-induced (TGFBI)-related dystrophies constitute the most common heritable forms of corneal dystrophy worldwide. However, other than the underlying genotypes of these conditions, a limited knowledge exists of the exact pathomechanisms of these disorders. This study expands on our previous research investigating dystrophic stromal aggregates, with the aim of better elucidating the pathomechanism of two conditions arising from the most common TGFBI mutations: granular corneal dystrophy type 1 (GCD1; R555W) and lattice corneal dystrophy type 1 (LCD1; R124C).

View Article and Find Full Text PDF

Purpose: The aim of this study is to further assess our previously reported keratin 12 (K12)-Leu132Pro specific siRNA in silencing the mutant allele in Meesmann's Epithelial Corneal Dystrophy (MECD) in experimental systems more akin to the in vivo situation through simultaneous expression of both wild-type and mutant alleles.

Methods: Using KRT12 exogenous expression constructs transfected into cells, mutant allele specific knockdown was quantified using pyrosequencing and infrared Western blot analysis, while the silencing mechanism was assessed by a modified rapid amplification of cDNA ends (5'RACE) method. Corneal limbal biopsies taken from patients suffering from MECD were used to establish cultures of MECD corneal limbal epithelial stem cells and the ability of the siRNA to silence the endogenous mutant KRT12 allele was assessed by a combination of pyrosequencing, qPCR, ELISA, and quantitative-fluorescent immunohistochemistry (Q-FIHC).

View Article and Find Full Text PDF

Purpose: This study aimed to investigate the potency and specificity of short-interfering RNA (siRNA) treatment for TGFBI-Arg124Cys lattice corneal dystrophy type I (LCDI) using exogenous expression constructs in model systems and endogenous gene targeting in an ex vivo model using corneal epithelial cell cultures.

Methods: A panel of 19 TGFBI-Arg124Cys-specific siRNAs were assessed by a dual-luciferase reporter assay. Further assessment using pyrosequencing and qPCR was used to identify the lead siRNA; suppression of mutant TGFBIp expression was confirmed by Western blot and Congo red aggregation assays.

View Article and Find Full Text PDF