Purinergic signaling plays a role in the pathophysiology of different viral infections. Recently, we showed that COVID-19 increases extracellular ATP levels, which may amplify the pro-inflammatory signals in the disease. The P2X7 receptor can be a protagonist in the pro-inflammatory responses.
View Article and Find Full Text PDFConnexins are essential gap junction proteins that play pivotal roles in intercellular communication in various organs of mammals. Connexin-43 (Cx43) is expressed in various components of the immune system, and there is extensive evidence of its participation in inflammation responses. The involvement of Cx43 in macrophage functionality involves the purinergic signaling pathway.
View Article and Find Full Text PDFZika virus (ZIKV), the causative agent of Zika fever, is a flavivirus transmitted by mosquitoes of the Aedes genus. Zika virus infection has become an international concern due to its association with severe neurological complications such as fetal microcephaly. Viral infection can induce the release of ATP in the extracellular environment, activating receptors sensitized by extracellular nucleotides, such as the P2X7 receptor.
View Article and Find Full Text PDFDisintegrins are a family of cysteine-rich small proteins that were first identified in snake venom. The high divergence of disintegrins gave rise to a plethora of functions, all related to the interaction with integrins. Disintegrins evolved to interact selectively with different integrins, eliciting many physiological outcomes and being promising candidates for the therapy of many pathologies.
View Article and Find Full Text PDFSepsis is defined as a multifactorial debilitating condition with high risks of death. The intense inflammatory response causes deleterious effects on the brain, a condition called sepsis-associated encephalopathy. Neuroinflammation or pathogen recognition are able to stress cells, resulting in ATP (Adenosine Triphosphate) release and P2X7 receptor activation, which is abundantly expressed in the brain.
View Article and Find Full Text PDFDespite long-term sequelae of COVID-19 are emerging as a substantial public health concern, the mechanism underlying these processes still unclear. Evidence demonstrates that SARS-CoV-2 Spike protein can reach different brain regions, irrespective of viral brain replication resulting in activation of pattern recognition receptors (PRRs) and neuroinflammation. Considering that microglia dysfunction, which is regulated by a whole array of purinergic receptors, may be a central event in COVID-19 neuropathology, we investigated the impact of SARS-CoV-2 Spike protein on microglial purinergic signaling.
View Article and Find Full Text PDFIntegrins are a family of heterodimeric transmembrane receptors which link the extracellular matrix to the cell cytoskeleton. These receptors play a role in many cellular processes: adhesion, proliferation, migration, apoptosis, and platelet aggregation, thus modulating a wide range of scenarios in health and disease. Therefore, integrins have been the target of new antithrombotic drugs.
View Article and Find Full Text PDFIntegrins are transmembrane heterodimeric glycoproteins, present in most cell types that act as mechanoreceptors, connecting extracellular matrix proteins to the cytoskeleton of the cell, mediating several physiological and pathological processes. The disintegrins are peptides capable of modulating the activity of integrins, such as αIIbβ3, responsible for the platelet aggregation and αvβ3, related to angiogenesis. The aim of this study was to produce the recombinant disintegrin jarastatin (rJast), to evaluate its secondary structure and biological activity.
View Article and Find Full Text PDFFront Immunol
April 2022
Disintegrins are a group of cysteine-rich proteins found in a wide variety of snake venoms. These proteins selectively bind to integrins, which play a fundamental role in the regulation of many physiological and pathological processes. Here, we report the NMR chemical shift assignments for H, N, and C nuclei in the backbone and side chains of recombinant disintegrin Jarastatin (rJast), which was further validated by secondary structure prediction using the TALOS-N server.
View Article and Find Full Text PDFd1 is a pea plant defensin which can be actively expressed in and shows broad antifungal activity. This activity is dependent on fungal membrane glucosylceramide (GlcCer), which is also important for its internalization, nuclear localization, and endoreduplication. Certain cancer cells present a lipid metabolism imbalance resulting in the overexpression of GlcCer in their membrane.
View Article and Find Full Text PDFJ Cell Sci
March 2020
Macrophages are tissue-resident immune cells that are crucial for the initiation and maintenance of immune responses. Purinergic signaling modulates macrophage activity and impacts cellular plasticity. The ATP-activated purinergic receptor P2X7 (also known as P2RX7) has pro-inflammatory properties, which contribute to macrophage activation.
View Article and Find Full Text PDFPisum sativum defensin 2 (Psd2) is a small (4.7 kDa) antifungal peptide whose structure is held together by four conserved disulfide bridges. Psd2 shares the cysteine-stabilized alpha-beta (CSαβ) fold, which lacks a regular hydrophobic core.
View Article and Find Full Text PDFThe dengue virus (DENV) non structural protein 1 (NS1) is a 46-55 kDa protein that exists as homodimer inside cells and as hexamer in the extracellular milieu. Several lines of evidence have demonstrated that the biochemical and structural properties of recombinant NS1 (rNS1) vary depending on the protein expression system used. Aiming to improve current tools for studying NS1 multiple roles, a recombinant tag-free NS1 protein was expressed and purified from P.
View Article and Find Full Text PDFPsd2 is a pea defensin with 47 amino acid residues that inhibits the growth of fungal species by an uncharacterized mechanism. In this work, Psd2 interactions with model membranes mimicking the lipid compositions of different organisms were evaluated. Protein-lipid overlay assays indicated that Psd2 recognizes Fusarium solani glucosylceramide (GlcCer) and ergosterol (Erg) in addition to phosphatidylcholine (POPC) and some phosphatidylinositol species, such as PtdIns (3)P, (5)P and (3,5)P, suggesting that these lipids may play important roles as Psd2 targets.
View Article and Find Full Text PDFAutoimmunity
August 2018
Autoantibodies against the M2 subtype of muscarinic acetylcholine receptors with functional activities have been found in the sera of patients with dilated cardiomyopathy (DCM), and the second extracellular loop has been established as the predominant epitope. However, it has been shown that the third intracellular loop is recognized by Chagas disease patients with severe cardiac dysfunction. In this work, BALB/c mice were immunized with plasmids encoding these two epitopes, and a control group received the empty plasmid (pcDNA3 vector).
View Article and Find Full Text PDFGouvêa, AL, Martinez, CG, and Kurtenbach, E. Determining maximal muscle strength in mice: validity and reliability of an adapted swimming incremental overload test. J Strength Cond Res 34(8): 2360-2368, 2020-At present, there are no reliable methods to determine maximal muscle strength in small rodents.
View Article and Find Full Text PDFis an important human pathogen, causing opportunistic infections. The adhesion of planktonic cells to a substrate is the first step for biofilm development. The antimicrobial peptide (AMP) d1 is a defensin isolated from seeds.
View Article and Find Full Text PDFSci Rep
November 2015
Autoantibodies against the M2 receptors (M2AChR) have been associated with Dilated Cardiomyopathy (DCM). In the heart, P2×7 receptors influence electrical conduction, coronary circulation and response to ischemia. They can also trigger pro-inflammatory responses and the development of neurological, cardiac and renal disorders.
View Article and Find Full Text PDFCarnosine (β-alanyl-L-histidine) is an imidazole dipeptide synthesized in excitable tissues of many animals, whose biochemical properties include carbonyl scavenger, anti-oxidant, bivalent metal ion chelator, proton buffer, and immunomodulating agent, although its precise physiological role(s) in skeletal muscle and brain tissues in vivo remain unclear. The aim of the present study was to investigate the in vivo effects of acute carnosine administration on various aspects of brain bioenergetics of young Wistar rats. The activity of mitochondrial enzymes in cerebral cortex was assessed using a spectrophotometer, and it was found that there was an increase in the activities of complexes I-III and II-III and succinate dehydrogenase in carnosine-treated rats, as compared to vehicle-treated animals.
View Article and Find Full Text PDFHigh intensity interval training (HIIT) is characterized by vigorous exercise with short rest intervals. Hydrogen peroxide (H2O2) plays a key role in muscle adaptation. This study aimed to evaluate whether HIIT promotes similar H2O2 formation via O2 consumption (electron leakage) in three skeletal muscles with different twitch characteristics.
View Article and Find Full Text PDFBackground: Sepsis is associated with high mortality rates in intensive care units worldwide and represents a systemic inflammatory response to infection. P2X7 is an ionotropic purine receptor with known proinflammatory activity. Here, we investigated the role of the P2X7 receptor in sepsis induced by cecal ligation and puncture (CLP).
View Article and Find Full Text PDFPsd1 is a plant defensin that has antifungal activity against several pathogenic and nonpathogenic fungi. Previous analysis of Psd1 chemical shift perturbations by nuclear magnetic resonance (NMR) spectroscopy demonstrated that this defensin interacts with phospholipids and the sphingolipid glucosylceramide isolated from Fusarium solani (GlcCer(Fusarium solani)). In this study, these interactions were evaluated by real-time surface plasmon resonance (SPR) analysis.
View Article and Find Full Text PDF