Publications by authors named "Eleonora Katz"

During development, inner hair cells (IHCs) in the mammalian cochlea are unresponsive to acoustic stimuli but instead exhibit spontaneous activity. During this same period, neurons originating from the medial olivocochlear complex (MOC) transiently innervate IHCs, regulating their firing pattern which is crucial for the correct development of the auditory pathway. Although the MOC-IHC is a cholinergic synapse, previous evidence indicates the widespread presence of gamma-aminobutyric acid (GABA) signaling markers, including presynaptic GABA receptors (GABAR).

View Article and Find Full Text PDF

Cochlear outer hair cells (OHCs) are electromotile and are implicated in mechanisms of amplification of responses to sound that enhance sound sensitivity and frequency tuning. They send information to the brain through glutamatergic synapses onto a small subpopulation of neurons of the ascending auditory nerve, the type II spiral ganglion neurons (SGNs). The OHC synapses onto type II SGNs are sparse and weak, suggesting that type II SGNs respond primarily to loud and possibly damaging levels of sound.

View Article and Find Full Text PDF

The organ of Corti, the auditory mammalian sensory epithelium, contains two types of mechanotransducer cells, inner hair cells (IHCs) and outer hair cells (OHCs). IHCs are involved in conveying acoustic stimuli to the CNS, while OHCs are implicated in the fine tuning and amplification of sounds. OHCs are innervated by medial olivocochlear (MOC) cholinergic efferent fibers.

View Article and Find Full Text PDF

In the mature mammalian cochlea, inner hair cells (IHCs) are mainly innervated by afferent fibers that convey sound information to the CNS. During postnatal development, however, medial olivocochlear (MOC) efferent fibers transiently innervate the IHCs. The MOC-IHC synapse, functional from postnatal day 0 (P0) to hearing onset (P12), undergoes dramatic changes in the sensitivity to acetylcholine (ACh) and in the expression of key postsynaptic proteins.

View Article and Find Full Text PDF

Gain control of the auditory system operates at multiple levels. Cholinergic medial olivocochlear (MOC) fibers originate in the brainstem and make synaptic contacts at the base of the outer hair cells (OHCs), the final targets of several feedback loops from the periphery and higher-processing centers. Efferent activation inhibits OHC active amplification within the mammalian cochlea, through the activation of a calcium-permeable α9α10 ionotropic cholinergic nicotinic receptor (nAChR), functionally coupled to calcium activated SK2 potassium channels.

View Article and Find Full Text PDF

The organ of Corti, the mammalian sensory epithelium of the inner ear, has two types of mechanoreceptor cells, inner hair cells (IHCs) and outer hair cells (OHCs). In this sensory epithelium, vibrations produced by sound waves are transformed into electrical signals. When depolarized by incoming sounds, IHCs release glutamate and activate auditory nerve fibers innervating them and OHCs, by virtue of their electromotile property, increase the amplification and fine tuning of sound signals.

View Article and Find Full Text PDF

Nicotinic acetylcholine receptors are a family of ligand-gated nonselective cationic channels that participate in fundamental physiological processes at both the central and the peripheral nervous system. The extent of calcium entry through ligand-gated ion channels defines their distinct functions. The α9α10 nicotinic cholinergic receptor, expressed in cochlear hair cells, is a peculiar member of the family as it shows differences in the extent of calcium permeability across species.

View Article and Find Full Text PDF

The synapse between olivocochlear (OC) neurons and cochlear mechanosensory hair cells is cholinergic, fast, and inhibitory. The inhibitory sign of this cholinergic synapse is accounted for by the activation of Ca(2+)-permeable postsynaptic α9α10 nicotinic receptors coupled to the opening of hyperpolarizing Ca(2+)-activated small-conductance type 2 (SK2)K(+) channels. Acetylcholine (ACh) release at this synapse is supported by both P/Q- and N-type voltage-gated calcium channels (VGCCs).

View Article and Find Full Text PDF

The α9 and α10 cholinergic nicotinic receptor subunits assemble to form the receptor that mediates efferent inhibition of hair cell function within the auditory sensory organ, a mechanism thought to modulate the dynamic range of hearing. In contrast to all nicotinic receptors, which serve excitatory neurotransmission, the activation of α9α10 produces hyperpolarization of hair cells. An evolutionary analysis has shown that the α10 subunit exhibits signatures of positive selection only along the mammalian lineage, strongly suggesting the acquisition of a unique function.

View Article and Find Full Text PDF

In the mammalian inner ear, the gain control of auditory inputs is exerted by medial olivocochlear (MOC) neurons that innervate cochlear outer hair cells (OHCs). OHCs mechanically amplify the incoming sound waves by virtue of their electromotile properties while the MOC system reduces the gain of auditory inputs by inhibiting OHC function. How this process is orchestrated at the synaptic level remains unknown.

View Article and Find Full Text PDF

Amplification of incoming sounds in the inner ear is modulated by an efferent pathway which travels back from the brain all the way to the cochlea. The medial olivocochlear system makes synaptic contacts with hair cells, where the neurotransmitter acetylcholine is released. Synaptic transmission is mediated by a unique nicotinic cholinergic receptor composed of α9 and α10 subunits, which is highly Ca2+ permeable and is coupled to a Ca2+-activated SK potassium channel.

View Article and Find Full Text PDF

In the mammalian auditory system, the synapse between efferent olivocochlear (OC) neurons and sensory cochlear hair cells is cholinergic, fast, and inhibitory. This efferent synapse is mediated by the nicotinic alpha9alpha10 receptor coupled to the activation of SK2 Ca(2+)-activated K(+) channels that hyperpolarize the cell. So far, the ion channels that support and/or modulate neurotransmitter release from the OC terminals remain unknown.

View Article and Find Full Text PDF

Mechanosensory hair cells of the organ of Corti transmit information regarding sound to the central nervous system by way of peripheral afferent neurons. In return, the central nervous system provides feedback and modulates the afferent stream of information through efferent neurons. The medial olivocochlear efferent system makes direct synaptic contacts with outer hair cells and inhibits amplification brought about by the active mechanical process inherent to these cells.

View Article and Find Full Text PDF

Efferent inhibition of cochlear hair cells is mediated by alpha9alpha10 nicotinic cholinergic receptors (nAChRs) functionally coupled to calcium-activated, small conductance (SK2) potassium channels. Before the onset of hearing, efferent fibers transiently make functional cholinergic synapses with inner hair cells (IHCs). The retraction of these fibers after the onset of hearing correlates with the cessation of transcription of the Chrna10 (but not the Chrna9) gene in IHCs.

View Article and Find Full Text PDF

Cochlear inner hair cells (IHCs) release neurotransmitter onto afferent auditory nerve fibers in response to sound stimulation. During early development, synaptic transmission is triggered by spontaneous Ca2+ spikes which are modulated by an efferent cholinergic innervation to IHCs. This synapse is inhibitory and mediated by the alpha9alpha10 nicotinic cholinergic receptor (nAChR).

View Article and Find Full Text PDF

The transduction of sound in the auditory periphery, the cochlea, is inhibited by efferent cholinergic neurons projecting from the brainstem and synapsing directly on mechanosensory hair cells. One fundamental question in auditory neuroscience is what role(s) this feedback plays in our ability to hear. In the present study, we have engineered a genetically modified mouse model in which the magnitude and duration of efferent cholinergic effects are increased, and we assess the consequences of this manipulation on cochlear function.

View Article and Find Full Text PDF

We characterized, by electrophysiological methods, two biophysical properties of murine recombinant alpha4beta2 nicotinic acetylcholine receptors (nAChR) bearing a mutation (alpha4:+L264alpha4:beta2 or alpha4:S252Falpha4:beta2) linked to autosomal dominant nocturnal frontal lobe epilepsy (ADNFLE). Sensitivity to acetylcholine (ACh) was increased by the S252F substitution expressed in heterozygosis (alpha4:S252Falpha4:beta2) but was markedly reduced when this mutation was expressed in homozygosis (S252Falpha4:beta2). ACh sensitivity was not altered by the +L264 insertion.

View Article and Find Full Text PDF

Although homomeric channels assembled from the alpha9 nicotinic acetylcholine receptor (nAChR) subunit are functional in vitro, electrophysiological, anatomical, and molecular data suggest that native cholinergic olivocochlear function is mediated via heteromeric nAChRs composed of both alpha9 and alpha10 subunits. To gain insight into alpha10 subunit function in vivo, we examined olivo cochlear innervation and function in alpha10 null-mutant mice. Electrophysiological recordings from postnatal (P) days P8-9 inner hair cells revealed ACh-gated currents in alpha10(+/+) and alpha10(+/-) mice, with no detectable responses to ACh in alpha10(-/-) mice.

View Article and Find Full Text PDF

The efferent synaptic specialization of hair cells includes a near-membrane synaptic cistern, whose presence suggests a role for internal calcium stores in cholinergic inhibition. Calcium release channels from internal stores include 'ryanodine receptors', whose participation is usually demonstrated by sensitivity to the eponymous plant alkaloid, ryanodine. However, use of this and other store-active compounds on hair cells could be confounded by the unusual pharmacology of the alpha9alpha10-containing hair cell nicotinic cholinergic receptor (nAChR), which has been shown to be antagonized by a broad spectrum of compounds.

View Article and Find Full Text PDF

In this study we report the effects of neramexane, a novel amino-alkyl-cyclohexane derivative that is a non-competitive N-methyl-D-aspartate (NMDA) receptor antagonist, on recombinant rat alpha9alpha10 nicotinic acetylcholine receptors expressed in Xenopus laevis oocytes. We compared its effects with those of memantine, a well-studied pore blocker of NMDA receptors, currently used in therapeutics for the treatment of Alzheimer's disease. Our results indicate that both compounds block acetylcholine-evoked responses at micromolar concentrations with a rank order of potency of neramexane>memantine, P<0.

View Article and Find Full Text PDF

The alpha9 and alpha10 nicotinic cholinergic subunits assemble to form the receptor that mediates synaptic transmission between efferent olivocochlear fibers and hair cells of the cochlea. They are the latest vertebrate nicotinic cholinergic receptor (nAChR) subunits that have been cloned, and their identification has established a distant early divergent branch within the nAChR gene family. The alpha10 subunit serves as a "structural" component leading to heteromeric alpha9alpha10 nAChRs with distinct properties.

View Article and Find Full Text PDF

In this study, we report the effects of the quinoline derivatives quinine, its optical isomer quinidine, and chloroquine on alpha9alpha10-containing nicotinic acetylcholine receptors (nAChRs). The compounds blocked acetylcholine (ACh)-evoked responses in alpha9alpha10-injected Xenopus laevis oocytes in a concentration-dependent manner, with a rank order of potency of chloroquine (IC50 = 0.39 microM) > quinine (IC50 = 0.

View Article and Find Full Text PDF

We have performed a systematic mutagenesis of three hydrophobic rings (17', 13' and 9') within transmembrane region (TM) 2 of the alpha9alpha10 nicotinic cholinergic receptor (nAChR) to a hydrophilic (threonine) residue and compared the properties of mutant receptors reconstituted in Xenopus laevis oocytes. Phenotypic changes in alpha9alpha10 mutant receptors were evidenced by a decrease in the desensitization rate, an increase in both the EC(50) for ACh as well as the efficacy of partial agonists and the reduction of the allosteric modulation by extracellular Ca(2+). Mutated receptors exhibited spontaneous openings and, at the single-channel level, an increased apparent mean open time with no major changes in channel conductance, thus suggesting an increase in gating of the channel as the underlying mechanism.

View Article and Find Full Text PDF

Before the onset of hearing, a transient efferent innervation is found on inner hair cells (IHCs). This synapse is inhibitory and mediated by a nicotinic cholinergic receptor (nAChR) probably formed by the alpha9 and alpha10 subunits. We analysed the pharmacological and biophysical characteristics of the native nAChR using whole-cell recordings from IHCs in acutely excised apical turns of the rat organ of Corti.

View Article and Find Full Text PDF

Cochlear hair cells are inhibited by cholinergic efferent neurons. The acetylcholine (ACh) receptor of the hair cell is a ligand-gated cation channel through which calcium enters to activate potassium channels and hyperpolarize the cell. It has been proposed that calcium-induced calcium release (CICR) from a near-membrane postsynaptic store supplements this process.

View Article and Find Full Text PDF