IEEE Trans Neural Netw Learn Syst
June 2024
Hypercomplex neural networks have proven to reduce the overall number of parameters while ensuring valuable performance by leveraging the properties of Clifford algebras. Recently, hypercomplex linear layers have been further improved by involving efficient parameterized Kronecker products. In this article, we define the parameterization of hypercomplex convolutional layers and introduce the family of parameterized hypercomplex neural networks (PHNNs) that are lightweight and efficient large-scale models.
View Article and Find Full Text PDFVariational autoencoders are deep generative models that have recently received a great deal of attention due to their ability to model the latent distribution of any kind of input such as images and audio signals, among others. A novel variational autoncoder in the quaternion domain H, namely the QVAE, has been recently proposed, leveraging the augmented second order statics of H-proper signals. In this paper, we analyze the QVAE under an information-theoretic perspective, studying the ability of the H-proper model to approximate improper distributions as well as the built-in H-proper ones and the loss of entropy due to the improperness of the input signal.
View Article and Find Full Text PDF