Climate change and compostinS1g methods have an important junction on the phenological and ripening grapevine phases. Moreover, the optimization of these composting methods in closed-loop corporate chains can skillfully address the waste problem (pomace, stalks, and pruning residues) in viticultural areas. Owing to the ongoing global warming, in many wine-growing regions, there has been unbalanced ripening, with tricky harvests.
View Article and Find Full Text PDFIn Mediterranean areas, extreme weather conditions such as high diurnal temperatures during the growing season could tweak vine physiology and metabolism, affecting grapes' quality. Moreover, uncertainty in spatial and temporal distribution precipitation is an issue for the water resources of the vineyards, forcing the winemakers to continuously face an increasing water demand in recent decades, which has led them to non-sustainable choices for ambient (i.e.
View Article and Find Full Text PDFClimate change and disproportionate anthropogenic interventions, such as the excess of phytopharmaceutical products and continuous soil tillage, are jeopardizing viticulture by subjecting plants to continuous abiotic stress. One of the main physiological repercussions of abiotic stress is represented by the unbalanced redox homeostasis due to the overproduction of reactive oxygen species (ROS), ultimately leading to a state of oxidative stress (detrimental to grape quality). To these are added the direct and indirect damages caused by pathogens (biotic stresses).
View Article and Find Full Text PDFEnvironmental factors might influence the carbon balance and sugar content in grapevine. In this two-year research, the STELLA software was employed to predict dry matter accumulation in Sangiovese vines, comparing the traditional vertical shoot positioning (VSP) and the single high wire (SHW) trellis systems. Every week, vegetative, eco-physiological and grape quality parameters were collected for 15 tagged vines per trellis system to set up the software.
View Article and Find Full Text PDFGrapevine canopy defoliation is a fundamentally important technique for the productivity and quality of grapes. Leaf removal is a pivotal operation on high-density vines which aims to improve air circulation, light exposure, and leaf gas exchange. The effects of leaf removal (LR) on vine physiology and berry composition in Cabernet Sauvignon grapevines were studied during the 2018-2019 growing season in the Bolgheri area, Tuscany, Italy.
View Article and Find Full Text PDFClimate change has an important impact on the phenological phases of the grapevine. The consequences are directly reflected in quantitative and qualitative characteristics of the grapes. In fact, there is a decrease in the skin-to-pulp ratio (therefore a decrease in production with an excess of alcohol) and a consequent reduction in the aromatic potential of white grapes (lowering of the quality of musts).
View Article and Find Full Text PDFSeveral advantages on physiology, productivity, and grape quality have been reported for grapevine treated with seaweed extracts, but little is known about the importance of cyanobacterial-based biostimulants in viticulture. The purpose of this pioneering work was to analyze the broad-spectrum effects of the F&M-C256 extract on L. cv.
View Article and Find Full Text PDFSeaweed-based extracts have been recently employed as sustainable tools to improve abiotic stress tolerance and increase grape quality. However, the effect of these extracts on secondary metabolism compounds, that are fundamental for grape and wine quality, is still scarce. In the present study, the effects of foliar treatments with an Ascophyllum nodosum extract on physiological and biochemical parameters of Vitis vinifera (cv.
View Article and Find Full Text PDF