Publications by authors named "Eleonora Carletti"

Porous vaterite containers of 400 nm size are studied with respect to intracellular drug delivery applications. A generic crystal phase transition from vaterite to calcite serves as a novel payload release mechanism, which reveals a delayed burst-release. This will permit control of the pharmacokinetics allowing for applications like preventive drug administration or scheduled application of pharmaceuticals during long term therapy.

View Article and Find Full Text PDF

Attainment of functional vascularization of engineered constructs is one of the fundamental challenges of tissue engineering. However, the development of an extracellular matrix in most tissues, including bone, is dependent upon the establishment of a well developed vascular supply. In this study a poly(d,l-lactic acid) (PDLLA) salt-leached sponge was modified by incorporation of silk fibroin fibers to create a multicomponent scaffold, in an effort to better support endothelial cell colonization and to promote in vivo vascularization.

View Article and Find Full Text PDF

This paper describes the results of a study aimed at developing and validating a prediction model to assess the annoyance conditions at the operator station of compact loaders by using noise signal objective parameters only. For this purpose, binaural measurements were carried out on 41 compact loaders, both in stationary and real working conditions. The 62 binaural noise recordings were objectively analysed in terms of acoustic and psychoacoustic parameters and then divided into 9 groups and used in specific jury tests to obtain the subjective annoyance scores.

View Article and Find Full Text PDF

In tissue engineering applications or even in 3D cell cultures, the biological cross talk between cells and the scaffold is controlled by the material properties and scaffold characteristics. In order to induce cell adhesion, proliferation, and activation, materials used for the fabrication of scaffolds must possess requirements such as intrinsic biocompatibility and proper chemistry to induce molecular biorecognition from cells. Materials, scaffold mechanical properties and degradation kinetics should be adapted to the specific tissue engineering application to guarantee the required mechanical functions and to accomplish the rate of the new-tissue formation.

View Article and Find Full Text PDF