Publications by authors named "Eleodoro Riveras"

Nitrate is the most abundant form of inorganic nitrogen in aerobic soils, serving both as a nutrient and a signaling molecule. Central to nitrate signaling in higher plants is the intricate balance between local and systemic signaling and response pathways. The interplay between local and systemic responses allows plants to regulate their global gene expression, metabolism, physiology, growth, and development under fluctuating nitrate availability.

View Article and Find Full Text PDF

Nitrate is a nutrient and signal that regulates gene expression. The nitrate response has been extensively characterized at the organism, organ, and cell-type-specific levels, but intracellular mRNA dynamics remain unexplored. To characterize nuclear and cytoplasmic transcriptome dynamics in response to nitrate, we performed a time-course expression analysis after nitrate treatment in isolated nuclei, cytoplasm, and whole roots.

View Article and Find Full Text PDF

Nitrate is a nutrient and a potent signal that impacts global gene expression in plants. However, the regulatory factors controlling temporal and cell type-specific nitrate responses remain largely unknown. We assayed nitrate-responsive transcriptome changes in five major root cell types of the root as a function of time.

View Article and Find Full Text PDF

The technique RT-qPCR for viral RNA detection is the current worldwide strategy used for early detection of the novel coronavirus SARS-CoV-2. RNA extraction is a key pre-analytical step in RT-qPCR, often achieved using commercial kits. However, the magnitude of the COVID-19 pandemic is causing disruptions to the global supply chains used by many diagnostic laboratories to procure the commercial kits required for RNA extraction.

View Article and Find Full Text PDF

Cholesterol Gallstone Disease (GSD) is a common multifactorial disorder characterized by crystallization and aggregation of biliary cholesterol in the gallbladder. The global prevalence of GSD is ~10-20% in the adult population but rises to 28% in Chile (17% among men and 30% among women). The small intestine may play a role in GSD pathogenesis, but the molecular mechanisms have not been clarified.

View Article and Find Full Text PDF
Article Synopsis
  • * The excessive use of nitrogen-rich fertilizers has negative economic and environmental effects, making it important to improve how plants uptake and metabolize nitrate for better efficiency.
  • * This review surveys significant developments in nitrate research over the past 30 years, covering areas like biochemistry and genomics, and aims to set a foundation for future inquiries into nitrate transport and regulation in plants.
View Article and Find Full Text PDF
Article Synopsis
  • - Whole human genome sequencing provides insights into population history and genetic diseases, but there's limited data on Southern Cone Native Americans, particularly the Mapuche-Huilliche from Southern Chile.
  • - A study of 11 Mapuche-Huilliche individuals revealed around 3.1 million single nucleotide variants, including 403,383 novel variants, along with numerous copy number and structural variants, indicating a genetically distinct population with indigenous ancestry.
  • - The findings highlight genetic variants linked to major health issues in Chile, suggesting potential tools for diagnostics and prevention in both native and mixed Latin American populations.
View Article and Find Full Text PDF

Latin Americans and Chilean Amerindians have the highest prevalence of gallstone disease (GSD) and gallbladder cancer (GBC) in the world. A handful of loci have been associated with GSD in populations of predominantly European ancestry, however, they only explain a small portion of the genetic component of the disease. Here, we performed a genome-wide association study (GWAS) for GSD in 1,095 admixed Chilean Latinos with Mapuche Native American ancestry.

View Article and Find Full Text PDF

The reproductive success of plants largely depends on the correct programming of developmental phase transitions, particularly the shift from vegetative to reproductive growth. The timing of this transition is finely regulated by the integration of an array of environmental and endogenous factors. Nitrogen is the mineral macronutrient that plants require in the largest amount, and as such its availability greatly impacts on many aspects of plant growth and development, including flowering time.

View Article and Find Full Text PDF

Understanding how plants sense and respond to changes in nitrogen availability is the first step toward developing strategies for biotechnological applications, such as improvement of nitrogen use efficiency. However, components involved in nitrogen signaling pathways remain poorly characterized. Calcium is a second messenger in signal transduction pathways in plants, and it has been indirectly implicated in nitrate responses.

View Article and Find Full Text PDF

Nitrate acts as a potent signal to control global gene expression in Arabidopsis. Using an integrative bioinformatics approach we identified TGA1 and TGA4 as putative regulatory factors that mediate nitrate responses in Arabidopsis roots. We showed that both TGA1 and TGA4 mRNAs accumulate strongly after nitrate treatments in roots.

View Article and Find Full Text PDF

Auxin is a key phytohormone regulating central processes in plants. Although the mechanism by which auxin triggers changes in gene expression is well understood, little is known about the specific role of the individual members of the TIR1/AFB auxin receptors, Aux/IAA repressors, and ARF transcription factors and/or molecular pathways acting downstream leading to plant responses to the environment. We previously reported a role for AFB3 in coordinating primary and lateral root growth to nitrate availability.

View Article and Find Full Text PDF