Publications by authors named "Eleni Patelaki"

This study elucidates the neural mechanisms underlying increasing cognitive load while walking by employing 2 versions of a response inhibition task, the '1-back' version and the more cognitively demanding '2-back' version. By using the Mobile Brain/Body Imaging (MoBI) modality, electroencephalographic (EEG) activity, three-dimensional (3D) gait kinematics and task-related behavioral responses were collected while young adults (n = 61) performed either the 1-back or 2-back response inhibition task. Interestingly, increasing inhibitory difficulty from 1-back to 2-back during walking was not associated with any detectable costs in response accuracy, response speed, or gait consistency.

View Article and Find Full Text PDF

Combining walking with a demanding cognitive task is traditionally expected to elicit decrements in gait and/or cognitive task performance. However, it was recently shown that, in a cohort of young adults, most participants improved performance when walking was added to performance of a Go/NoGo response inhibition task. The present study aims to extend these previous findings to an older adult cohort, to investigate whether this improvement when dual-tasking is observed in healthy older adults.

View Article and Find Full Text PDF

Introduction: In young adults, pairing a cognitive task with walking can have different effects on gait and cognitive task performance. In some cases, performance clearly declines whereas in others compensatory mechanisms maintain performance. This study investigates the preliminary finding of behavioral improvement in Go/NoGo response inhibition task performance during walking compared with sitting, which was observed at the piloting stage.

View Article and Find Full Text PDF

During mobile brain/body imaging (MoBI) experiments, electroencephalography and motion capture systems are used in concert to record high temporal resolution neural activity and movement kinematics while participants perform demanding perceptual and cognitive tasks in a naturalistic environment. A typical MoBI setup involves positioning multi-channel electrode caps based on anatomical fiducials as well as experimenter and participant intuition regarding the scalp midpoint location (i.e.

View Article and Find Full Text PDF

Asynchronous movement of the carotid atheromatous plaque from B-mode ultrasound has been previously reported, and associated with higher risk of stroke, but not quantitatively estimated. Based on the hypothesis that asynchronous plaque motion is associated with vulnerable plaque, in this study, synchronisation patterns of different tissue areas were estimated using cross-correlations of displacement waveforms. In 135 plaques (77 subjects), plaque radial deformation was synchronised by approximately 50% with the arterial diameter, and the mean phase shift was 0.

View Article and Find Full Text PDF