Single-cell RNA sequencing (scRNAseq) of tumour-infiltrating immune cells in high-grade serous ovarian cancer (HGSOC) omental biopsies reveals potential targets that could enhance response to neo-adjuvant chemotherapy (NACT). Analysis of 64,097 cells identifies NACT-induced overexpression of stabilin-1 (clever-1) on macrophages and FOXP3 in Tregs that is confirmed at the protein level. STAB1 inhibition in vitro induces anti-tumour macrophages.
View Article and Find Full Text PDFHeart failure remains one of the largest clinical burdens globally, with little to no improvement in the development of disease-eradicating therapeutics. Integrin targeting has been used in the treatment of ocular disease and cancer, but little is known about its utility in the treatment of heart failure. Here we sought to determine whether the second generation orally available, αvβ3-specific RGD-mimetic, , was cardioprotective.
View Article and Find Full Text PDFGlioblastomas are the most common malignant brain tumors in adults; they are highly aggressive and heterogeneous and show a high degree of plasticity. Here, we show that methyltransferase-like 7B (METTL7B) is an essential regulator of lineage specification in glioblastoma, with an impact on both tumor size and invasiveness. Single-cell transcriptomic analysis of these tumors and of cerebral organoids derived from expanded potential stem cells overexpressing METTL7B reveal a regulatory role for the gene in the neural stem cell-to-astrocyte differentiation trajectory.
View Article and Find Full Text PDFBackground: A major driver of cancer chromosomal instability is replication stress, the slowing or stalling of DNA replication. How replication stress and genomic instability are connected is not known. Aphidicolin-induced replication stress induces breakages at common fragile sites, but the exact causes of fragility are debated, and acute genomic consequences of replication stress are not fully explored.
View Article and Find Full Text PDFSome patients with advanced clear-cell ovarian cancer (CCOC) respond to immunotherapy; however, little is known about the tumor microenvironment (TME) of this relatively rare disease. Here, we describe a comprehensive quantitative and topographical analysis of biopsies from 45 patients, 9 with Federation Internationale des Gynaecologistes et Obstetristes (FIGO) stage I/II (early CCOC) and 36 with FIGO stage III/IV (advanced CCOC). We investigated 14 immune cell phenotype markers, PD-1 and ligands, and collagen structure and texture.
View Article and Find Full Text PDFThis article investigates mechanisms of resistance to the VEGF receptor inhibitor cediranib in high-grade serous ovarian cancer (HGSOC), and defines rational combination therapies. We used three different syngeneic orthotopic mouse HGSOC models that replicated the human tumor microenvironment (TME). After 4 to 5 weeks treatment of established tumors, cediranib had antitumor activity with increased tumor T-cell infiltrates and alterations in myeloid cells.
View Article and Find Full Text PDFThe tumor microenvironment evolves during malignant progression, with major changes in nonmalignant cells, cytokine networks, and the extracellular matrix (ECM). In this study, we aimed to understand how the ECM changes during neoplastic transformation of serous tubal intraepithelial carcinoma lesions (STIC) into high-grade serous ovarian cancers (HGSOC). Analysis of the mechanical properties of human fallopian tubes (FT) and ovaries revealed that normal FT and fimbria had a lower tissue modulus, a measure of stiffness, than normal or diseased ovaries.
View Article and Find Full Text PDFGlioblastoma (GBM) is the most common and aggressive intrinsic brain tumour in adults. Epigenetic mechanisms controlling normal brain development are often dysregulated in GBM. Among these, BMI1, a structural component of the Polycomb Repressive Complex 1 (PRC1), which promotes the H2AK119ub catalytic activity of Ring1B, is upregulated in GBM and its tumorigenic role has been shown and .
View Article and Find Full Text PDFGuided by a multi-level "deconstruction" of omental metastases, we developed a tetra (four cell)-culture model of primary human mesothelial cells, fibroblasts, adipocytes, and high-grade serous ovarian cancer (HGSOC) cell lines. This multi-cellular model replicated key elements of human metastases and allowed malignant cell invasion into the artificial omental structure. Prompted by findings in patient biopsies, we used the model to investigate the role of platelets in malignant cell invasion and extracellular matrix, ECM, production.
View Article and Find Full Text PDFIn a multi-level "deconstruction" of omental metastases, we previously identified a prognostic matrisome gene expression signature in high-grade serous ovarian cancer (HGSOC) and twelve other malignancies. Here, our aim was to understand how six of these extracellular matrix (ECM) molecules, COL11A1, cartilage oligomeric matrix protein, FN1, versican, cathepsin B, and COL1A1, are upregulated in cancer. Using biopsies, we identified significant associations between TGFβR activity, Hedgehog (Hh) signaling, and these ECM molecules and studied the associations in mono-, co-, and tri-culture.
View Article and Find Full Text PDFDetermining the tissue- and disease-specific circuit of biological pathways remains a fundamental goal of molecular biology. Many components of these biological pathways still remain unknown, hindering the full and accurate characterization of biological processes of interest. Here we describe ACSNI, an algorithm that combines prior knowledge of biological processes with a deep neural network to effectively decompose gene expression profiles (GEPs) into multi-variable pathway activities and identify unknown pathway components.
View Article and Find Full Text PDFNeoadjuvant chemotherapy (NACT) may stimulate anticancer adaptive immune responses in high-grade serous ovarian cancer (HGSOC), but little is known about effects on innate immunity. Using omental biopsies from HGSOC, and omental tumors from orthotopic mouse HGSOC models that replicate the human tumor microenvironment, we studied the impact of platinum-based NACT on tumor-associated macrophages (TAM). We found that chemotherapy reduces markers associated with alternative macrophage activation while increasing expression of proinflammatory pathways, with evidence of inflammasome activation.
View Article and Find Full Text PDFThe basement membrane (BM) is a special type of extracellular matrix and presents the major barrier cancer cells have to overcome multiple times to form metastases. Here we show that BM stiffness is a major determinant of metastases formation in several tissues and identify netrin-4 (Net4) as a key regulator of BM stiffness. Mechanistically, our biophysical and functional analyses in combination with mathematical simulations show that Net4 softens the mechanical properties of native BMs by opening laminin node complexes, decreasing cancer cell potential to transmigrate this barrier despite creating bigger pores.
View Article and Find Full Text PDFChromosomal instability (CIN) comprises continual gain and loss of chromosomes or parts of chromosomes and occurs in the majority of cancers, often conferring poor prognosis. Because of a scarcity of functional studies and poor understanding of how genetic or gene expression landscapes connect to specific CIN mechanisms, causes of CIN in most cancer types remain unknown. High-grade serous ovarian carcinoma (HGSC), the most common subtype of ovarian cancer, is the major cause of death due to gynecologic malignancy in the Western world, with chemotherapy resistance developing in almost all patients.
View Article and Find Full Text PDFAlthough there are many prospective targets in the tumor microenvironment (TME) of high-grade serous ovarian cancer (HGSOC), pre-clinical testing is challenging, especially as there is limited information on the murine TME. Here, we characterize the TME of six orthotopic, transplantable syngeneic murine HGSOC lines established from genetic models and compare these to patient biopsies. We identify significant correlations between the transcriptome, host cell infiltrates, matrisome, vasculature, and tissue modulus of mouse and human TMEs, with several stromal and malignant targets in common.
View Article and Find Full Text PDFB cells are salient features of pancreatic ductal adenocarcinoma (PDAC) tumors, yet their role in this disease remains controversial. Murine studies have indicated a protumoral role for B cells, whereas clinical data show tumor-infiltrating B cells are a positive prognostic factor, both in PDAC and other cancers. This disparity needs to be clarified in order to develop effective immunotherapies.
View Article and Find Full Text PDFWe have profiled, for the first time, an evolving human metastatic microenvironment by measuring gene expression, matrisome proteomics, cytokine and chemokine levels, cellularity, extracellular matrix organization, and biomechanical properties, all on the same sample. Using biopsies of high-grade serous ovarian cancer metastases that ranged from minimal to extensive disease, we show how nonmalignant cell densities and cytokine networks evolve with disease progression. Multivariate integration of the different components allowed us to define, for the first time, gene and protein profiles that predict extent of disease and tissue stiffness, while also revealing the complexity and dynamic nature of matrisome remodeling during development of metastases.
View Article and Find Full Text PDFElevated expression of the chemokine receptor CCR4 in tumors is associated with poor prognosis in several cancers. Here, we have determined that CCR4 was highly expressed in human renal cell carcinoma (RCC) biopsies and observed abnormal levels of CCR4 ligands in RCC patient plasma. An antagonistic anti-CCR4 antibody had antitumor activity in the RENCA mouse model of RCC.
View Article and Find Full Text PDFPurpose: In high-grade serous ovarian cancer (HGSOC), higher densities of both B cells and the CD8 T-cell infiltrate were associated with a better prognosis. However, the precise role of B cells in the antitumor response remains unknown. As peritoneal metastases are often responsible for relapse, our aim was to characterize the role of B cells in the antitumor immune response in HGSOC metastases.
View Article and Find Full Text PDF