Lipid oxidation in food products is a crucial problem that causes undesirable changes in the food's flavor, texture, and nutritional value. It should be carefully monitored as it can lead to the formation of potentially toxic compounds and in that way reduce the shelf life of the product. Liquid chromatography coupled to mass spectrometry is a powerful tool to monitor the formation of oxidized lipids.
View Article and Find Full Text PDFLipid oxidation is one of the major causes of food spoilage for lipid-rich foods. In particular, oil-in-water emulsions, like mayonnaises and spreads, are prone to oxidation due to the increased interfacial area that facilitates contact between the lipids and hydrophilic pro-oxidants present in the water phase. Polar, amphiphilic lipid species present at the oil/water interface, like the mono- (MAGs) and di-acylglycerols (DAGs), act as oxidation starters that initiate subsequent oxidation reactions of the non-polar lipids in the oil droplets.
View Article and Find Full Text PDFTriterpene cyclases catalyze the first committed step in triterpene biosynthesis, by forming mono- to pentacyclic backbone structures from oxygenated C30 isoprenoid precursors. Squalene epoxidase precedes this cyclization by providing the oxygenated and activated substrate for triterpene biosynthesis. Three squalene epoxidases from Cucurbita pepo (CpSEs) were isolated and shown to have evolved under purifying selection with signs of sites under positive selection in their N- and C-termini.
View Article and Find Full Text PDFGlucosinolates are found in plants of the order Brassicales and hydrolyzed to different breakdown products, particularly after tissue damage. In Barbarea vulgaris R.Br.
View Article and Find Full Text PDF