Mesoporous silica is a versatile material for energy, environmental, and medical applications. Here, for the first time, we report a flame aerosol synthesis method for a class of mesoporous silica with hollow structure and specific surface area exceeding 1000 m g . We show its superior performance in water purification, as a drug carrier, and in thermal insulation.
View Article and Find Full Text PDFWe introduce a flame-based aerosol process for producing supported non-noble metal nanocatalysts from inexpensive aqueous metal salt solutions, using catalysts for the dry reforming of methane (DRM) as a prototype. A flame-synthesized nickel-doped magnesia (MgO) nanocatalyst (NiMgO-F) was fully physicochemically characterized and tested in a flow reactor system, where it showed stable DRM activity from 500 to 800 °C. A kinetic study was conducted, and apparent activation energies were extracted for the temperature range of 500-650 °C.
View Article and Find Full Text PDFBoron containing catalysts have great potential in the oxidative dehydrogenation of propane. Herein, a series of 15, 25 and 42 at% boron-hyperdoped silicon catalysts synthesized by laser pyrolysis was studied. Boron-hyperdoped silicon samples showed >6 times higher propylene productivity than commercial h-BN at 450 °C.
View Article and Find Full Text PDFAn amendment to this paper has been published and can be accessed via a link at the top of the paper.
View Article and Find Full Text PDFSupported metal single atom catalysts (SACs) present an emerging class of low-temperature catalysts with high reactivity and selectivity, which, however, face challenges on both durability and practicality. Herein, we report a single-atom Pt catalyst that is strongly anchored on a robust nanowire forest of mesoporous rutile titania grown on the channeled walls of full-size cordierite honeycombs. This Pt SAC exhibits remarkable activity for oxidation of CO and hydrocarbons with 90% conversion at temperatures as low as ~160 C under simulated diesel exhaust conditions while using 5 times less Pt-group metals than a commercial oxidation catalyst.
View Article and Find Full Text PDFRh-dendrimer nanocomposites were synthesized in solution under different conditions and were subsequently used as precursors for the preparation of ZrO2-supported Rh nanoparticles. Elemental analysis, UV-vis, XPS, and STEM measurements were used to estimate the extent of the Rh-dendrimer interactions and to illustrate how the solution pH and dialysis affect the number of Rh atoms complexed with each dendrimer molecule, as well as the final size of the ZrO2-supported Rh particles. When the solution acidity was not controlled and the solution was not purified by dialysis, Rh particles with sizes in the 1-6 nm range were formed on the ZrO2 support.
View Article and Find Full Text PDF