The pervasive and frequently devastating nature of aggressive behavior calls for a collective effort to understand its psychosocial and neurobiological underpinnings. Regarding the latter, diverse brain areas, neural networks, neurotransmitters, hormones, and candidate genes have been associated with antisocial and aggressive behavior in humans and animals. This review focuses on the role of monoamine oxidases (MAOs) and the genes coding for them, in the modulation of aggression.
View Article and Find Full Text PDFWernicke's encephalopathy (WE) is a serious neuropsychiatric syndrome caused by chronic alcoholism and thiamine (T) deficiency. Our aim was to shed more light on the pathophysiology of WE, by introducing a modified in vivo experimental model of WE and by focusing on changes provoked in the total antioxidant status (TAS) and three crucial brain enzyme activities in adult rats. Rats were placed on ethanol (EtOH) consumption (20 % v/v) for a total of 5 weeks.
View Article and Find Full Text PDFAggression is a complex social behavior that involves a similarly complex neurochemical background. The involvement of substance P (SP) and its potent tachykinin receptor (NK1) in the induction of both defensive rage and predatory attack appears to be a consistent finding. However, an overall understanding of the nature of the SP involvement in the induction of aggressive behavior has not yet been fully achieved.
View Article and Find Full Text PDF