Publications by authors named "Eleni Evgenidou"

In this study, the adsorption of a mixture of high-consumed drugs onto virgin and aged PET microplastics has been studied for the time ever. The target mixture comprised two anti-inflammatory drugs, diclofenac and ketoprofen, one anti-hypertensive, valsartan, and four common antibiotics, indomethacin, trimethoprim, isoniazid, and metronidazole. Two types of PET MPs (virgin and UV-aged) were used in the experimental procedure.

View Article and Find Full Text PDF

Untangling the consumption rates of psychiatric drugs and their metabolites/ transformation products-(TPs) through wastewater gains attention lately. However, the potential environmental impact caused by their release remains ambiguous. As it follows, the monitoring of this class of pharmaceuticals as well as the evaluation of their potential toxicity is a matter of high concern.

View Article and Find Full Text PDF

Antibiotics, recognized as Emerging Contaminants (ECs), have raised concerns due to their pervasive presence in wastewater treatment plants (WWTPs) and subsequent release into aquatic environments, posing potential ecological risks and contributing to the development of antibiotic-resistant genes. The COVID-19 pandemic prompted an unprecedented surge in antibiotic consumption, necessitating a comprehensive assessment of its impact on antibiotic levels in wastewater. In this light, a four-year monitoring study (2020-2023) was conducted in a WWTP located in the Northern Greece (Thessaloniki), employing High-Resolution Mass Spectrometry (HRMS) technology to monitor twenty antibiotics, during distinct phases pre-, during, and post-COVID-19.

View Article and Find Full Text PDF

In recent years, transformation products-(TPs) of pharmaceuticals in the environment have received considerable attention. In this context, here, a customized overview of transformation of Furosemide-(FRS) in aqueous matrices treated by photo-oxidation is provided as a proof of concept. Hence, the primary goal of the study was to display an integrated strategy by combining the target (parent-molecule) and suspect screening-(SS) approaches (TPs) in order to build an in-house High-Resolution mass spectrometry (HRMS) database able to provide reference information (chromatographic/spectral) for environmental investigations in complex matrices (wastewaters/landfill leachates).

View Article and Find Full Text PDF

Persistent, mobile, and toxic chemicals (PMT), such as the antimycotic climbazole-(CBZ), proliferate in water cycle and imperil drinking water quality, sparking off research about their environmental fate. Unlike the parent compound, its transformation products-(TPs) are scarcely investigated, much less as PMTs. To this end, phototransformation of CBZ was investigated.

View Article and Find Full Text PDF

This study explores the photocatalytic transformation of the antiviral drug abacavir employing different advanced oxidation processes (AOPs) such as UV/TiO, UV/MOF/HO, UV/MOF/SO, UV/Fe/HO, and UV/Fe/SO. All processes appear to be effective in eliminating abacavir within a few minutes, while the evolution profile of the basic transformation product, descyclopropyl-abacavir (TP-247) was also monitored. Moreover, the implementation of the most efficient technologies towards the removal of abacavir in different matrices such as wastewater effluent and leachate was also assessed, revealing that the organic matter present or the inorganic constituents can retard the whole process.

View Article and Find Full Text PDF

Fears concerning microplastics (MPs) environmental fate and persistence are progressively expanding on a global basis, with the emphasis given to manufacturing bioplastics for substituting petro-derived plastics extensively growing. Among them, poly(lactic acid) (PLA) holds a pioneering role towards the replacement of conventional polymeric materials, owing to its multifunctional properties, enclosing superior mechanical properties, low cost, renewability, great biocompatibility, transparency, and thermoplasticity launching many fields of application. Due to the wide applicability of PLA in several sectors of everyday life, its waste to be released into the environment is expected to follow a growing tendency during the upcoming years.

View Article and Find Full Text PDF

The intensification of agricultural production during the last decades has forced the rapid increase in the use of pesticides that finally end up in the aquatic environment. Albeit well-documented, pesticides continue to raise researchers' attention, because of their potential adverse impacts on the environment and, inevitably, humans. Once entering the aquatic bodies, pesticides undergo biotic and abiotic processes, resulting in transformation products (TPs) that sometimes are even more toxic than the parent compounds.

View Article and Find Full Text PDF

Exploring the contamination profile of multi-class emerging contaminants (ECs) in wastewater is highly desirable. To this end, the occurrence, removal, mass loading and risks associated with a large panel of pharmaceuticals and personal care products, illicit drugs, perfluorinated compounds and organophosphate flame retardants in two wastewater treatment plants (WWTPs) in the region of Thessaloniki (Greece) after a survey is illustrated. Influent and effluent wastewaters were submitted to solid phase extraction on Oasis HLB cartridges, followed by ultra-high-performance liquid chromatography Orbitrap high-resolution mass spectrometry (UHPLC-Orbitrap MS).

View Article and Find Full Text PDF

The omnipresent character of microplastics (MPs) in environmental matrices, organisms and products has recently posed the need of their qualitative as well as quantitative analysis imperative, in order to provide data about their abundance and specification of polymer types in several substrates. In this framework, current and emerging approaches based on the chromatographic separation are of increased relevance in the field of MPs analysis and possess a large number of merits, since most of them are applicable in various complex matrices, sensitive and ideal for the detection of small-sized particles, whereas the common absence of any special pre-treatment step before analysis should also be highlighted. Αnalytical pyrolysis coupled with gas chromatography mass spectrometry (GC-MS) has recently gained ground as a powerful means to deliver information on MPs composition and degradation after their release into environment.

View Article and Find Full Text PDF

Multi-residue analysis is highly desirable for water quality control. To this end, a comprehensive workflow for the quantitative analysis of 172 anthropogenic organic compounds belonging to emerging contaminants (pharmaceuticals and personal care products, illicit drugs, organophosphate flame retardants and perfluoroalkyl substances) has been developed for application to wastewater and tap water, based on solid phase extraction (SPE) and Orbitrap high resolution mass spectrometry (HRMS). Due to the large number of analytes with various physicochemical characteristics that should be efficiently extracted, the response surface methodology (RSM) employing a central composite design (CCD) and desirability function (DF) approach was exploited to optimize the sample preparation process, instead of the conventional single-factor analysis.

View Article and Find Full Text PDF

The present study comprehensively investigates the phototransformation and ecotoxicity of a mixture of twelve pharmaceutically active compounds (PhACs) susceptible to photolysis. Namely, three antibiotics (ciprofloxacin, levofloxacin, moxifloxacin), three antidepressants (bupropion, duloxetine, olanzapine), three anti-inflammatory drugs (diclofenac, ketoprofen, nimesulide), two beta-blockers (propranolol, timolol) and the antihistamine ranitidine were treated under simulated solar irradiation in ultra-pure and river water. A total of 166 different transformation products (TPs) were identified by ultra-high performance liquid chromatography coupled with Orbitrap high resolution mass spectrometry (UHPLC-Orbitrap HRMS), revealing the formation of twelve novel TPs and forty-nine not previously described in photolytic studies.

View Article and Find Full Text PDF

The photocatalytic activity of two bio-based polymer photocatalysts [poly(ethylene terephthalate)-TiO (PET-TiO) and poly(L-lactic acid)-graphene oxide-TiO (PLLA-GO-TiO)] towards Tamoxifen (TAM), Cyclophosphamide (CP), Cytarabine (CYT) and 5-Fluorouracil (5-FLU) removal was explored and compared. The highest photocatalytic activity for the degradation of the cytostatic drugs was accomplished by PET-TiO. Among the contaminants, TAM was the most easily removed, requiring 90 min for complete elimination, while CP showed the highest resistance to photocatalysis, not being completely removed after 6 h.

View Article and Find Full Text PDF

The environmental release of antiviral drugs is of considerable concern due to potential ecosystem alterations and the development of antiviral resistance. As a result, interest on their occurrence and fate in natural and engineered systems has grown substantially in recent years. The main scope of this review is to fill the void of information on the knowledge on the worldwide occurrence of antiviral drugs in wastewaters and natural waters and correlate their levels with their environmental fate.

View Article and Find Full Text PDF

Recently the synthesis and application of bio-based composite materials, which contain polymeric and inorganic units such as TiO, has gained much attention in the field of water/wastewater treatment, due to their better (and more practical) performance parameters. In the present study, recycled poly(ethylene terephthalate) (PET) has been used and evaluated as supporting polymer for Aeroxide P25 TiO immobilization. PET-TiO composite films were synthesized at different TiO content (10%, 30% and 47% TiO) and characterized with different techniques such as X-ray Powder Diffraction (XRD), Thermogravimetric analysis (TGA), Differential scanning calorimetry (DSC), Scanning electron microscopy (SEM), etc.

View Article and Find Full Text PDF

Pharmaceuticals and personal care products (PPCPs) along with illicit drugs (IDs) are newly recognized classes of environmental pollutants and are receiving considerable attention because of their environmental impacts: frequent occurrence, persistence and risk to aquatic life and humans. However, relatively little information is often available with regard to their possible biotic and abiotic transformation products (TPs). This lack of knowledge has resulted in a substantial amount of ongoing effort to develop methods and approaches that would assess their occurrence, degradability potential elimination mechanisms and efficiencies in sewage treatment plants as well as environmental and human health risks.

View Article and Find Full Text PDF

We describe herein the synthesis of stable aromatic and heteroaromatic sulfonyl-amidoximes, from the reaction of amidoximes with the corresponding sulfonyl chlorides, in low to excellent yields. Evaluation of their antioxidant activity has shown that 17 out of 28 compounds highly compete DMSO for hydroxyl radicals, while five of them inhibit lipid peroxidation. Combining the reducing and anti-lipid peroxidation ability it seems that compounds 13 and 31 could be used as lead molecules.

View Article and Find Full Text PDF