The plethora of available disease prediction models and the ongoing process of their application into clinical practice - following their clinical validation - have created new needs regarding their efficient handling and exploitation. Consolidation of software implementations, descriptive information, and supportive tools in a single place, offering persistent storage as well as proper management of execution results, is a priority, especially with respect to the needs of large healthcare providers. At the same time, modelers should be able to access these storage facilities under special rights, in order to upgrade and maintain their work.
View Article and Find Full Text PDFIn the past decades a great progress in cancer research has been made although medical treatment is still widely based on empirically established protocols which have many limitations. Computational models address such limitations by providing insight into the complex biological mechanisms of tumor progression. A set of clinically-oriented, multiscale models of solid tumor dynamics has been developed by the In Silico Oncology Group (ISOG), Institute of Communication and Computer Systems (ICCS)-National Technical University of Athens (NTUA) to study cancer growth and response to treatment.
View Article and Find Full Text PDF