-2-hexenal is a volatile compound that is commonly emitted by wounded or stressed plants. It belongs to the group of so-called green leaf volatiles (GLVs), which play an important role in transferring information to plants and insects. While most biosynthetic enzymes upstream of -2-hexenal have been studied extensively, much less is known about the enzyme responsible for the conversion from -3- to -2-hexenal.
View Article and Find Full Text PDFPlants are known to be responsive to volatiles, but knowledge about the molecular players involved in transducing their perception remains scarce. We study the response of Arabidopsis thaliana to E-2-hexenal, one of the green leaf volatiles (GLV) that is produced upon wounding, herbivory or infection with pathogens. We have taken a transcriptomics approach to identify genes that are induced by E-2-hexenal, but not by defence hormones or other GLVs.
View Article and Find Full Text PDFBackground: Glandular trichomes are production and storage organs of specialized metabolites such as terpenes, which play a role in the plant's defense system. The present study aimed to shed light on the regulation of terpene biosynthesis in Solanum lycopersicum trichomes by identification of transcription factors (TFs) that control the expression of terpene synthases.
Results: A trichome transcriptome database was created with a total of 27,195 contigs that contained 743 annotated TFs.
Terpene biosynthesis in tomato glandular trichomes has been well studied, with most if not all terpene synthases (TPSs) being identified. However, transcription factors (TFs) that regulate TPSs have not yet been discovered from tomato. In order to unravel the transcriptional regulation of the Solanum lycopersicum linalool synthase (SlMTS1, recently renamed SlTPS5) gene in glandular trichomes, we functionally dissected its promoter.
View Article and Find Full Text PDFSolanum lycopersicum and Solanum habrochaites (f. typicum) accession PI127826 emit a variety of sesquiterpenes. To identify terpene synthases involved in the production of these volatile sesquiterpenes, we used massive parallel pyrosequencing (RNA-seq) to obtain the transcriptome of the stem trichomes from these plants.
View Article and Find Full Text PDFCompounds of the terpenoid class play numerous roles in the interactions of plants with their environment, such as attracting pollinators and defending the plant against pests. We show here that the genome of cultivated tomato (Solanum lycopersicum) contains 44 terpene synthase (TPS) genes, including 29 that are functional or potentially functional. Of these 29 TPS genes, 26 were expressed in at least some organs or tissues of the plant.
View Article and Find Full Text PDF