Increasing environmental concerns and the need for sustainable materials have driven a focus towards the utilization of recycled polylactic acid (PLA) in additive manufacturing as PLA offers advantages over other thermoplastics, including biodegradability, ease of processing, and a lower environmental impact during production. This study explores the optimization of the mechanical properties of recycled PLA parts through a combination of experimental and machine learning approaches. A series of experiments were conducted to investigate the impact of various processing parameters, such as layer thickness and infill density, as well as annealing conditions, on the mechanical properties of recycled PLA parts.
View Article and Find Full Text PDFGlass-fiber-reinforced polymer (GFRP) composites are widely used due to their high strength-to-weight ratio and corrosion resistance. However, their properties can degrade under different environmental conditions, affecting long-term reliability. This study examines the effects of temperature and chemical environments on GFRP pipes.
View Article and Find Full Text PDFIn this study, the objective was to optimize energy consumption in the fused deposition modeling (FDM) 3D printing process via a detailed analysis of printing parameters. By utilizing thermal analysis techniques, this research aimed to identify lower printing temperatures that could lead to reduced energy usage. Experimental analysis was conducted using a three-level L9 Taguchi orthogonal array, which involved a systematic combination of different extruder temperatures and cooling fan capacities.
View Article and Find Full Text PDFThe aim of the study was to prepare effective low-cost green adsorbents based on spent black tea leaves for the removal of nitrate ions from aqueous solutions. These adsorbents were obtained either by thermally treating spent tea to produce biochar (UBT-TT), or by employing the untreated tea waste (UBT) to obtain convenient bio-sorbents. The adsorbents were characterized before and after adsorption by Scanning Electron Microscopy (SEM), Energy Dispersed X-ray analysis (EDX), Infrared Spectroscopy (FTIR), and Thermal Gravimetric Analysis (TGA).
View Article and Find Full Text PDF