The thalamus plays important roles as a relay station for sensory information in the central nervous system (CNS). Although thalamic glial cells participate in this activity, little is known about their properties. In this study, we characterized the formation of coupled networks between astrocytes and oligodendrocytes in the murine ventrobasal thalamus and compared these properties with those in the hippocampus and cortex.
View Article and Find Full Text PDFPurpose: Dysfunction of the blood-brain barrier (BBB) and albumin extravasation have been suggested to play a role in the etiology of human epilepsy. In this context, dysfunction of glial cells attracts increasing attention. Our study was aimed to analyze in the hippocampus (1) which cell types internalize albumin injected into the lateral ventricle in vivo, (2) whether internalization into astrocytes impacts their coupling and expression of connexin 43 (Cx43), and (3) whether expression of Kir4.
View Article and Find Full Text PDF