Human cardiac Cardiac digital twins (CDTs) are digital replicas of patient hearts, designed to match clinical observations precisely. The electro-cardiogram (ECG), as the most common non-invasive electrophysiology (EP) measurement, has been recently successfully employed for calibrating CDT. However, ECG-based calibration methods often fail to account for the inherent uncertainties in clinical data acquisition and CDT anatomical generation workflows.
View Article and Find Full Text PDFComputational models of atrial electrophysiology (EP) are increasingly utilized for applications such as the development of advanced mapping systems, personalized clinical therapy planning, and the generation of virtual cohorts and digital twins. These models have the potential to establish robust causal links between simulated in silico behaviors and observed human atrial EP, enabling safer, cost-effective, and comprehensive exploration of atrial dynamics. However, current state-of-the-art approaches lack the fidelity and scalability required for regulatory-grade applications, particularly in creating high-quality virtual cohorts or patient-specific digital twins.
View Article and Find Full Text PDF