Publications by authors named "Elena Zagaynova"

The most effective method of treating tumors localized in the liver remains resection. However, in the presence of concomitant pathology, the regenerative potential of the liver is significantly reduced. To date, there is insufficient fundamental data on the mechanisms responsible for the disruption of liver regeneration, and there is no effective method for assessing its regenerative potential.

View Article and Find Full Text PDF

Background/objectives: This study focuses on the development and evaluation of novel alginate-poly[2-(methacryloyloxy)ethyl]trimethylammonium chloride (PMETAC) microcapsules for encapsulating pancreatic islets to address insulin deficiency in diabetes.

Methods: In previous research, we fabricated and characterized PMETAC microcapsules, evaluating their stability and permeability in vitro. This study further probes the capsules in vivo, focusing on the functional activity of the encapsulated islets post-transplantation, their viability extension, and the assessment of the immunoprotective, antifibrotic properties, and biostability of the capsules.

View Article and Find Full Text PDF

Islet transplantation represents a promising therapeutic approach for diabetes management, yet the isolation and evaluation of pancreatic islets remain challenging. This study focuses on the isolation of islets from rabbit pancreases, followed by a comprehensive assessment of their viability and functionality. We developed a novel method for isolating islet cells from the pancreas of adult rabbits.

View Article and Find Full Text PDF

Islet allotransplantation offers a promising cell therapy for type 1 diabetes, but challenges such as limited donor availability and immunosuppression persist. Microencapsulation of islets in polymer-coated alginate microcapsules is a favored strategy for immune protection and maintaining islet viability. This study introduces Poly [2-(methacryloyloxy)ethyl]trimethylammonium chloride (PMETAC) as an innovative coating material for microcapsules.

View Article and Find Full Text PDF

This work was aimed at the complex analysis of the metabolic and oxygen statuses of tumors in vivo after photodynamic therapy (PDT). Studies were conducted on mouse tumor model using two types of photosensitizers-chlorin e6-based drug Photoditazine predominantly targeted to the vasculature and genetically encoded photosensitizer KillerRed targeted to the chromatin. Metabolism of tumor cells was assessed by the fluorescence lifetime of the metabolic redox-cofactor NAD(P)H, using fluorescence lifetime imaging.

View Article and Find Full Text PDF

A decrease in the regenerative potential of the liver during the development of non-alcoholic fatty liver disease (NAFLD), which is observed in the vast majority of patients with diabetes mellitus type 1, significantly increases the risk of postoperative liver failure. In this regard, it is necessary to develop new approaches for the rapid intraoperative assessment of the condition of liver tissue in the presence of concomitant liver pathology. A modern label-free approach based on multiphoton microscopy, second harmonic generation (SHG), and fluorescence lifetime imaging microscopy (FLIM) allow for the evaluation of the structure of liver tissue as well as the assessment of the metabolic state of hepatocytes, even at the cellular level.

View Article and Find Full Text PDF

The cell membrane is an important regulator for the cytotoxicity of chemotherapeutic agents. However, the biochemical and biophysical effects that occur in the membrane under the action of chemotherapy drugs are not fully described. In the present study, changes in the microviscosity of membranes of living HeLa-Kyoto tumor cells were studied during chemotherapy with paclitaxel, a widely used antimicrotubule agent.

View Article and Find Full Text PDF

Optical coherence tomography (OCT) is a promising tool for intraoperative tissue morphology determination. Several studies suggest that attenuation coefficient derived from the OCT images, can differentiate between tissues of different morphology, such as normal and pathological structures of the brain, skin, and other tissues. In the present study, the depth-resolved method for attenuation coefficient calculation was adopted for the real-world situation of the depth-dependent OCT sensitivity and additive imaging noise with nonzero mean.

View Article and Find Full Text PDF

Currently, optical biopsy technologies are being developed for rapid and label-free visualization of biological tissue with micrometer-level resolution. They can play an important role in breast-conserving surgery guidance, detection of residual cancer cells, and targeted histological analysis. For solving these problems, compression optical coherence elastography (C-OCE) demonstrated impressive results based on differences in the elasticity of different tissue constituents.

View Article and Find Full Text PDF

Abuse with hepatotoxic agents is a major cause of acute liver failure. The search for new criteria indicating the acute or chronic pathological processes is still a challenging issue that requires the selection of effective tools and research models. Multiphoton microscopy with second harmonic generation (SHG) and fluorescence lifetime imaging microscopy (FLIM) are modern label-free methods of optical biomedical imaging for assessing the metabolic state of hepatocytes, therefore reflecting the functional state of the liver tissue.

View Article and Find Full Text PDF
Article Synopsis
  • The text reviews the well-understood processes of normal liver regeneration after surgical removal (resection) and highlights factors that can hinder this regeneration, particularly in patients with existing liver conditions.
  • It emphasizes the importance of understanding these disruptive mechanisms in order to develop targeted therapies that either enhance liver regeneration or counteract factors that inhibit it.
  • Additionally, the review touches on potential strategies for promoting liver regeneration and methods for assessing the liver's regenerative capability during surgery.
View Article and Find Full Text PDF

Identifying the precise topography of cancer for targeted biopsy in colonoscopic examination is a challenge in current diagnostic practice. For the first time we demonstrate the use of compression optical coherence elastography (C-OCE) technology as a new functional OCT modality for differentiating between cancerous and non-cancerous tissues in colon and detecting their morphological features on the basis of measurement of tissue elastic properties. The method uses pre-determined stiffness values (Young's modulus) to distinguish between different morphological structures of normal (mucosa and submucosa), benign tumor (adenoma) and malignant tumor tissue (including cancer cells, gland-like structures, cribriform gland-like structures, stromal fibers, extracellular mucin).

View Article and Find Full Text PDF

Background: There is an urgent clinical need for targeted strategies aimed at the treatment of bone defects resulting from fractures, infections or tumors. 3D scaffolds represent an alternative to allogeneic MSC transplantation, due to their mimicry of the cell niche and the preservation of tissue structure. The actual structure of the scaffold itself can affect both effective cell adhesion and its osteoinductive properties.

View Article and Find Full Text PDF

Introduction: To improve the quality of brain tumor resections, it is important to differentiate zones with myelinated fibers destruction from tumor tissue and normal white matter. Optical coherence tomography (OCT) is a promising tool for brain tissue visualization and in the present study, we demonstrate the ability of cross-polarization (CP) OCT to detect damaged white matter and differentiate it from normal and tumor tissues.

Materials And Methods: The study was performed on 215 samples of brain tissue obtained from 57 patients with brain tumors.

View Article and Find Full Text PDF

To reduce the risk of post-hepatectomy liver failure in patients with hepatic pathologies, it is necessary to develop an approach to express the intraoperative assessment of the liver's regenerative potential. Traditional clinical methods do not enable the prediction of the function of the liver remnant. Modern label-free bioimaging, using multiphoton microscopy in combination with second harmonic generation (SHG) and fluorescence lifetime imaging microscopy (FLIM), can both expand the possibilities for diagnosing liver pathologies and for assessing the regenerative potential of the liver.

View Article and Find Full Text PDF

Assessment of T-cell response to the tumor is important for diagnosis of the disease and monitoring of therapeutic efficacy. For this, new non-destructive label-free methods are required. Fluorescence lifetime imaging (FLIM) of metabolic coenzymes is a promising innovative technology for the assessment of the functional status of cells.

View Article and Find Full Text PDF

FLIM (Fluorescence Lifetime Imaging Microscopy) is a powerful tool that could be used in the future to diagnose islet cell recovery after therapy. The identification of appropriate FLIM parameters is required to determine islet quality and islet cell metabolism throughout the organ under various conditions of insulin deficiency. The aim of the work was to identify key FLIM parameters, changes of which are characteristic of pancreatic pathologies.

View Article and Find Full Text PDF

The extracellular matrix (ECM) plays an important role in regulation of many aspects of tumor growth and response to therapies. However, the specifics of the interaction of chemotherapeutic agents with cancer cells in the presence of collagen, the major component of ECM, is still poorly investigated. In this study, we explored distribution of doxorubicin (DOX) and its effects on cancer cells' metabolism in the presence of collagen with different structures in 3D models.

View Article and Find Full Text PDF

iPSCs and their derivatives are the most promising cell sources for creating skin equivalents. However, their properties are not fully understood. In addition, new approaches and parameters are needed for studying cells in 3D models without destroying their organization.

View Article and Find Full Text PDF

The investigations reported here were designed to determine whether the bulk plasma membrane is involved in mechanisms of acquired resistance of colorectal cancer cells to 5-fluorouracil (5-FU). Fluorescence lifetime imaging microscopy (FLIM) of live cultured cells stained with viscosity-sensitive probe BODIPY 2 was exploited to non-invasively assess viscosity in the course of treatment and adaptation to the drug. In parallel, lipid composition of membranes was examined with the time-of-flight secondary ion mass spectrometry (ToF-SIMS).

View Article and Find Full Text PDF

In this article, we offer a novel classification of progressive changes in the connective tissue of dermis in vulvar lichen sclerosus (VLS) relying on quantitative assessment of the second harmonic generation (SHG) signal received from formalin fixed and deparaffinized tissue sections. We formulate criteria for distinguishing four degrees of VLS development: Initial-Mild-Moderate-Severe. Five quantitative characteristics (length and thickness type I Collagen fibers, Mean SHG signal intensity, Skewness and Coherence SHG signal) are used to describe the sequential degradation of connective tissue (changes in the structure, orientation, shape and density of collagen fibers) up to the formation of specific homogeneous masses.

View Article and Find Full Text PDF

Cellular redox status and the level of reactive oxygen species (ROS) are important regulators of apoptotic potential, playing a crucial role in the growth of cancer cell and their resistance to apoptosis. However, the relationships between the redox status and ROS production during apoptosis remain poorly explored. In this study, we present an investigation on the correlations between the production of ROS, the redox ratio FAD/NAD(P)H, the proportions of the reduced nicotinamide cofactors NADH and NADPH, and caspase-3 activity in cancer cells at the level of individual cells.

View Article and Find Full Text PDF

Changes in intracellular pH (pHi) reflect metabolic states of cancer cells during tumor growth and dissemination. Therefore, monitoring of pHi is essential for understanding the metabolic mechanisms that support cancer progression. Genetically encoded fluorescent pH sensors have become irreplaceable tools for real-time tracking pH in particular subcellular compartments of living cells.

View Article and Find Full Text PDF

Molecular, morphological, and physiological heterogeneity is the inherent property of cells which governs differences in their response to external influence. Tumor cell metabolic heterogeneity is of a special interest due to its clinical relevance to tumor progression and therapeutic outcomes. Rapid, sensitive, and noninvasive assessment of metabolic heterogeneity of cells is a great demand for biomedical sciences.

View Article and Find Full Text PDF