The fusion of artificial neural networks and fuzzy logic systems allows researchers to model real-world problems through the development of intelligent and adaptive systems. Artificial neural networks are able to adapt and learn by adjusting the interconnections between layers, while fuzzy logic inference systems provide a computing framework based on the concept of fuzzy set theory, fuzzy if-then rules, and fuzzy reasoning. The combined use of those adaptive structures is known as "neuro-fuzzy" systems.
View Article and Find Full Text PDFFuzzy logic is an innovative scientific field with several successful applications. Genetic algorithms and fuzzy logic systems fusion provide real-world problems modeling through the development of intelligent and adaptive systems. Moreover, the statistical analysis of the epidemiology of infectious diseases, which combines fuzzy logic aspects, is vital for perceiving their evolution and control potential.
View Article and Find Full Text PDFThe combination of Artificial Neural Networks and Fuzzy Logic Systems enables the representation of real-world problems via the creation of intelligent and adaptive systems. By adapting the interconnections between layers, Artificial Neural networks are able to learn. A computing framework based on the concept of fuzzy set and rules as well as fuzzy reasoning is offered by fuzzy logic inference systems.
View Article and Find Full Text PDF