Spirocyclic nitroxyl radicals (SNRs) are stable paramagnetics bearing spiro-junction at a-, b-, or g-carbon atom of the nitroxide fragment, which is part of the heterocyclic system. Despite the fact that the first representatives of SNRs were obtained about 50 years ago, the methodology of their synthesis and their usage in chemistry and biochemical applications have begun to develop rapidly only in the last two decades. Due to the presence of spiro-function in the SNRs molecules, the latter have increased stability to various reducing agents (including biogenic ones), while the structures of the biradicals (SNBRs) comprises a rigid spiro-fused core that fixes mutual position and orientation of nitroxide moieties that favors their use in dynamic nuclear polarization (DNP) experiments.
View Article and Find Full Text PDFThermally stable organic diradicals with a triplet ground state along with large singlet-triplet energy gap have significant potential for advanced technological applications. A series of phenylene-bridged diradicals with oxoverdazyl and nitronyl nitroxide units were synthesized via a palladium-catalyzed cross-coupling reaction of iodoverdazyls with a nitronyl nitroxide-2-ide gold(I) complex with high yields. The diradicals exhibit high stability and do not decompose in an inert atmosphere up to 180 °C.
View Article and Find Full Text PDFCyclic nitrones of the imidazole series, containing a sterically hindered phenol group, are promising objects for studying antioxidant activity; on the other hand, they can form persistent hybrid phenoxyl-nitroxyl radicals (HPNs) upon oxidation. Here, a series of 5-aryl-4,4-dimethyl-4-imidazole 3-oxides was obtained by condensation of aromatic 2-hydroxylaminoketones with 4-formyl-2,6-dialkylphenols followed by oxidation of the initially formed -hydroxy derivatives. It was shown that the antioxidant activity of both 1-hydroxy-2,5-dihydroimidazoles and 4-imidazole 3-oxides increases with a decrease in steric volume of the alkyl substituent in the phenol group, while the stability of the corresponding HPNs generated from 4-imidazole 3-oxides reveals the opposite tendency.
View Article and Find Full Text PDF