The neuronal damage characteristic of HIV-1-mediated CNS diseases is inflicted by HIV-1 infected brain macrophages. Several steps of viral replication, including assembly and budding, differ between macrophages and T cells; it is likely that cell-specific host factors mediate these differences. We previously defined Annexin 2 (Anx2) as an HIV Gag binding partner in human monocyte-derived macrophages (MDMs) that promotes proper viral assembly.
View Article and Find Full Text PDFSimian immunodeficiency virus (SIV) and human immunodeficiency virus (HIV) gp160s obtained from the brain are often genetically distinct from those isolated from other organs, suggesting the presence of brain-specific selective pressures or founder effects that result in the compartmentalization of viral quasi-species. Whereas HIV has also been found to compartmentalize within different regions of the brain, the extent of brain-regional compartmentalization of SIV in rhesus macaques has not been characterized. Furthermore, much is still unknown about whether phenotypic differences exist in envelopes from different brain regions.
View Article and Find Full Text PDFHuman immunodeficiency virus (HIV) replication in the major natural target cells, CD4+ T lymphocytes and macrophages, is parallel in many aspects of the virus life cycle. However, it differs as to viral assembly and budding, which take place on plasma membranes in T cells and on endosomal membranes in macrophages. It has been postulated that cell type-specific host factors may aid in directing viral assembly to distinct destinations.
View Article and Find Full Text PDFSimian immunodeficiency virus (SIV)-infected macaques develop an encephalitis (SIVE) that is pathologically virtually indistinguishable from that associated with HIV infection, with multinucleated giant cells (MNGCs) being the principal histopathological manifestation. To dissect SIV variants responsible for MNGC development, we examined the relationships between env sequences transcribed in individual MNGCs and those from genomic DNA of brain and spleen tissues. The brain-specific variant found in all brain clones was dominant among the clones from MNGCs, suggesting a role in the formation of giant cells.
View Article and Find Full Text PDF