Many organisms adjust their reproductive phenology in response to climate change, but phenological sensitivity to temperature may vary between species. For example, resident and migratory birds have vastly different annual cycles, which can cause differential temperature sensitivity at the breeding grounds, and may affect competitive dynamics. Currently, however, adjustment to climate change in resident and migratory birds have been studied separately or at relatively small geographical scales with varying time series durations and methodologies.
View Article and Find Full Text PDFAdvances in the phenology of organisms are often attributed to climate change, but alternatively, may reflect a publication bias towards advances and may be caused by environmental factors unrelated to climate change. Both factors are investigated using the breeding dates of 25 long-term studied populations of Ficedula flycatchers across Europe. Trends in spring temperature varied markedly between study sites, and across populations the advancement of laying date was stronger in areas where the spring temperatures increased more, giving support to the theory that climate change causally affects breeding date advancement.
View Article and Find Full Text PDFSpring temperatures in temperate regions have increased over the past 20 years and many organisms have responded to this increase by advancing the timing of their growth and reproduction. However, not all populations show an advancement of phenology. Understanding why some populations advance and others do not will give us insight into the possible constraints and selection pressures on the advancement of phenology.
View Article and Find Full Text PDF