Reactive oxygen species (ROS) are formed in plant cells continuously. When ROS production exceeds the antioxidant capacity of the cells, oxidative stress develops which causes damage of cell components and may even lead to the induction of programmed cell death (PCD). The levels of ROS production increase upon abiotic stress, but also during pathogen attack in response to elicitors, and upon application of toxic compounds such as synthetic herbicides or natural phytotoxins.
View Article and Find Full Text PDFPhytotoxic macrolides attract attention as prototypes of new herbicides. However, their mechanisms of action (MOA) on plants have not yet been elucidated. This study addresses the effects of two ten-membered lactones, stagonolide A (STA) and herbarumin I (HBI) produced by the fungus , on , and .
View Article and Find Full Text PDFThe microalga (formerly ) is able to accumulate high amounts of the carotenoid astaxanthin in the course of adaptation to stresses like salinity. Technologies aimed at production of natural astaxanthin for commercial purposes often involve salinity stress; however, after a switch to stressful conditions, experiences massive cell death which negatively influences astaxanthin yield. This study addressed the possibility to improve cell survival in subjected to salinity via manipulation of the levels of autophagy using AZD8055, a known inhibitor of TOR kinase previously shown to accelerate autophagy in several microalgae.
View Article and Find Full Text PDFTen-membered lactones (nonenolides) demonstrate phytotoxic, antimicrobial, and fungicidal activity promising for the development of natural product-derived pesticides. The fungus is able to produce phytotoxic stagonolides A (), J (), K () and herbarumin I () with high yield. The aim of this study was to create a set of structurally related nonenolides and to reveal the structural features that affect their biological activity.
View Article and Find Full Text PDFThe ability to develop secondary (post-cytokinetic) plasmodesmata (PD) is an important evolutionary advantage that helps in creating symplastic domains within the plant body. Developmental regulation of secondary PD formation is not completely understood. In flowering plants, secondary PD occur exclusively between cells from different lineages, e.
View Article and Find Full Text PDFIn mature leaves, cell-to-cell transport via plasmodesmata between mesophyll cells links the production of assimilates by photosynthesis with their export to sink organs. This study addresses the question of how signals derived from chloroplasts and photosynthesis influence plasmodesmata permeability. Cell-to-cell transport was analyzed in leaves of the Arabidopsis chlorophyll b-less ch1-3 mutant, the same mutant complemented with a cyanobacterial CAO gene (PhCAO) overaccumulating chlorophyll b, the trxm3 mutant lacking plastidial thioredoxin m3, and the ntrc mutant lacking functional NADPH:thioredoxin reductase C.
View Article and Find Full Text PDFSinglet oxygen (O) refers to the lowest excited electronic state of molecular oxygen. It easily oxidizes biological molecules and, therefore, is cytotoxic. In plant cells, O is formed mostly in the light in thylakoid membranes by reaction centers of photosystem II.
View Article and Find Full Text PDFThe barley (Hordeum vulgare L.) chlorina f2 3613 mutant exhibits low photosynthesis and slow growth. This results from downregulation of the levels of photosynthetic antenna proteins caused by the absence of chl b, the major regulator of photosynthetic antennae in land plants.
View Article and Find Full Text PDFIn plant cells, peroxisomes participate in the metabolism of reactive oxygen species (ROS). One of the major regulators of cellular ROS levels - catalase (CAT) - occurs exclusively in peroxisomes. CAT activity is required for immunity-triggered autophagic programmed cell death (PCD).
View Article and Find Full Text PDFEnvironmental stresses such as salinity, drought, oxidants, heavy metals, hypoxia, extreme temperatures and others can induce autophagy and necrosis-type programmed cell death (PCD) in plant roots. These reactions are accompanied by the generation of reactive oxygen species (ROS) and ion disequilibrium, which is induced by electrolyte/K+ leakage through ROS-activated ion channels, such as the outwardly-rectifying K+ channel GORK and non-selective cation channels. Here, we discuss mechanisms of the stress-induced ion disequilibrium and relate it with ROS generation and onset of morphological, biochemical and genetic symptoms of autophagy and PCD in roots.
View Article and Find Full Text PDFThe lateral mobility of integral components of thylakoid membranes, such as plastoquinone, xanthophylls, and pigment-protein complexes, is critical for the maintenance of efficient light harvesting, high rates of linear electron transport, and successful repair of damaged photosystem II (PSII). The packaging of the photosynthetic pigment-protein complexes in the membrane depends on their size and stereometric parameters which in turn depend on the composition of the complexes. Chlorophyll b (Chlb) is an important regulator of antenna size and composition.
View Article and Find Full Text PDFIn plants, organogenesis and specification of cell layers and tissues rely on precise symplastic delivery of regulatory molecules via plasmodesmata. Accordingly, abundance and aperture of plasmodesmata at individual cell boundaries should be controlled by the plant. Recently, studies in Arabidopsis established reactive oxygen species as major regulators of plasmodesmata formation and gating.
View Article and Find Full Text PDF