Publications by authors named "Elena Trintchina"

The FimH protein is the adhesive subunit of Escherichia coli type 1 fimbriae. It mediates shear-dependent bacterial binding to monomannose (1M)-coated surfaces manifested by the existence of a shear threshold for binding, below which bacteria do not adhere. The 1M-specific shear-dependent binding of FimH is consistent with so-called catch bond interactions, whose lifetime is increased by tensile force.

View Article and Find Full Text PDF

Spread of biological species from primary into novel habitats leads to within-species adaptive niche differentiation and is commonly driven by acquisition of point mutations in individual genes that increase fitness in the alternative environment. However, finding footprints of adaptive niche differentiation in specific genes remains a challenge. Here we describe a novel method to analyze the footprint of pathogenicity-adaptive, or pathoadaptive, mutations in the Escherichia coli gene encoding FimH-the major, mannose-sensitive adhesin.

View Article and Find Full Text PDF

Surface adhesion of bacteria generally occurs in the presence of shear stress, and the lifetime of receptor bonds is expected to be shortened in the presence of external force. However, by using Escherichia coli expressing the lectin-like adhesin FimH and guinea pig erythrocytes in flow chamber experiments, we show that bacterial attachment to target cells switches from loose to firm upon a 10-fold increase in shear stress applied. Steered molecular dynamics simulations of tertiary structure of the FimH receptor binding domain and subsequent site-directed mutagenesis studies indicate that shear-enhancement of the FimH-receptor interactions involves extension of the interdomain linker chain under mechanical force.

View Article and Find Full Text PDF