Publications by authors named "Elena Torfs"

This study explores various approaches to formulating a parallel hybrid model (HM) for Water and Resource Recovery Facilities (WRRFs) merging a mechanistic and a data-driven model. In the study, the HM is constructed by training a neural network (NN) on the residual of the mechanistic model for effluent nitrate. In an initial experiment using the Benchmark Simulation Model no.

View Article and Find Full Text PDF

Digital transformation for the water sector has gained momentum in recent years, and many water resource recovery facilities modelers have already started transitioning from developing traditional models to digital twin (DT) applications. DTs simulate the operation of treatment plants in near real time and provide a powerful tool to the operators and process engineers for real-time scenario analysis and calamity mitigation, online process optimization, predictive maintenance, model-based control, and so forth. So far, only a few mature examples of full-scale DT implementations can be found in the literature, which only address some of the key requirements of a DT.

View Article and Find Full Text PDF

An improved 1D reactive settler model is pursued in order to increase the understanding of reactive settling processes and obtain a better prediction of the nitrogen mass balance in wastewater treatment systems. The developed model is based on the 1D Bürger-Diehl settler model with compression function and the Activated Sludge Model No. 1 biological reactions.

View Article and Find Full Text PDF

Water management in most of the developed world is currently practiced in a highly centralized manner, leading to major infrastructure and energy costs to transport water. To decrease the impacts of water scarcity and climate change, the decentralization of water can increase local robustness. In extremis, decentralization can involve building or house level water supply and treatment.

View Article and Find Full Text PDF

Digital Twins (DTs) are on the rise as innovative, powerful technologies to harness the power of digitalisation in the WRRF sector. The lack of consensus and understanding when it comes to the definition, perceived benefits and technological needs of DTs is hampering their widespread development and application. Transitioning from traditional WRRF modelling practice into DT applications raises a number of important questions: When is a model's predictive power acceptable for a DT? Which modelling frameworks are most suited for DT applications? Which data structures are needed to efficiently feed data to a DT? How do we keep the DT up to date and relevant? Who will be the main users of DTs and how to get them involved? How do DTs push the water sector to evolve? This paper provides an overview of the state-of-the-art, challenges, good practices, development needs and transformative capacity of DTs for WRRF applications.

View Article and Find Full Text PDF

This work gives an overview of the state-of-the-art in modelling of short-cut processes for nitrogen removal in mainstream wastewater treatment and presents future perspectives for directing research efforts in line with the needs of practice. The modelling status for deammonification (i.e.

View Article and Find Full Text PDF

Mathematical modelling is an indispensable tool to support water resource recovery facility (WRRF) operators and engineers with the ambition of creating a truly circular economy and assuring a sustainable future. Despite the successful application of mechanistic models in the water sector, they show some important limitations and do not fully profit from the increasing digitalisation of systems and processes. Recent advances in data-driven methods have provided options for harnessing the power of Industry 4.

View Article and Find Full Text PDF

Mathematical modelling is increasingly used to improve the design, understanding, and operation of water systems. Two modelling paradigms, i.e.

View Article and Find Full Text PDF

We present a compartmental extended SEIQRD metapopulation model for SARS-CoV-2 spread in Belgium. We demonstrate the robustness of the calibration procedure by calibrating the model using incrementally larger datasets and dissect the model results by computing the effective reproduction number at home, in workplaces, in schools, and during leisure activities. We find that schools and home contacts are important transmission pathways for SARS-CoV-2 under lockdown measures.

View Article and Find Full Text PDF

The wastewater industry is currently facing dramatic changes, shifting away from energy-intensive wastewater treatment towards low-energy, sustainable technologies capable of achieving energy positive operation and resource recovery. The latter will shift the focus of the wastewater industry to how one could manage and extract resources from the wastewater, as opposed to the conventional paradigm of treatment. Debatable questions arise: can the more complex models be calibrated, or will additional unknowns be introduced? After almost 30 years using well-known International Water Association (IWA) models, should the community move to other components, processes, or model structures like 'black box' models, computational fluid dynamics techniques, etc.

View Article and Find Full Text PDF

Cellulose, mostly in the form of toilet paper, forms a major component of the particulates in raw municipal wastewater, which could lead to significant consequences due to the potential accumulation of cellulosic fibers and slow biodegradability. Despite the sparse reports on cellulose content and degradation in wastewater and sludge, an accurate and validated method for its quantification in such matrices does not exist. In this paper, four different methods were compared including dilute acid hydrolysis, concentrated acid hydrolysis, enzymatic hydrolysis, and the Schweitzer reagent method.

View Article and Find Full Text PDF

The presence of micropollutants in the environment and their toxic impacts on the aquatic environment have raised concern about their inefficient removal in wastewater treatment plants. In this study, the fate of micropollutants of four different classes was simulated in a conventional activated sludge plant using a bioreactor micropollutant fate model coupled to a settler model. The latter was based on the Bürger-Diehl model extended for the first time to include micropollutant fate processes.

View Article and Find Full Text PDF

A new perspective on the modelling of settling behaviour in water resource recovery facilities is introduced. The ultimate goal is to describe in a unified way the processes taking place both in primary settling tanks (PSTs) and secondary settling tanks (SSTs) for a more detailed operation and control. First, experimental evidence is provided, pointing out distributed particle properties (such as size, shape, density, porosity, and flocculation state) as an important common source of distributed settling behaviour in different settling unit processes and throughout different settling regimes (discrete, hindered and compression settling).

View Article and Find Full Text PDF

The presence of micropollutants in the environment has triggered research on quantifying and predicting their fate in wastewater treatment plants (WWTPs). Since the removal of micropollutants is highly related to conventional pollutant removal and affected by hydraulics, aeration, biomass composition and solids concentration, the fate of these conventional pollutants and characteristics must be well predicted before tackling models to predict the fate of micropollutants. In light of this, the current paper presents the dynamic modelling of conventional pollutants undergoing activated sludge treatment using a limited set of additional daily composite data besides the routine data collected at a WWTP over one year.

View Article and Find Full Text PDF
Article Synopsis
  • Advanced 1-D models for Secondary Settling Tanks (SSTs) consider various factors affecting the settling process, like hindered and compression settling, requiring careful selection and calibration of mathematical expressions.
  • Evaluating existing hindered settling functions against long-term data reveals that traditional exponential models combine hindered and compression effects, making them inadequate for precise advanced modeling.
  • A power-law function is identified as a more suitable option for accurately representing hindered settling velocity in advanced 1-D SST frameworks.
View Article and Find Full Text PDF

Population balance models (PBMs) represent a powerful modelling framework for the description of the dynamics of properties that are characterised by distributions. This distribution of properties under transient conditions has been demonstrated in many chemical engineering applications. Modelling efforts of several current and future unit processes in wastewater treatment plants could potentially benefit from this framework, especially when distributed dynamics have a significant impact on the overall unit process performance.

View Article and Find Full Text PDF

The consistent modelling methodology for secondary settling tanks (SSTs) leads to a partial differential equation (PDE) of nonlinear convection-diffusion type as a one-dimensional model for the solids concentration as a function of depth and time. This PDE includes a flux that depends discontinuously on spatial position modelling hindered settling and bulk flows, a singular source term describing the feed mechanism, a degenerating term accounting for sediment compressibility, and a dispersion term for turbulence. In addition, the solution itself is discontinuous.

View Article and Find Full Text PDF