The following hypothesis proposes non-diffusive, environmental bacteriophage (phage) motion. (1) Some phage-hosting, motile bacteria undergo chemotaxis down ATP concentration gradients to escape lysis-inducing conditions, such as phage infection. (2) Some phages respond by non-infective binding to the motile bacteria.
View Article and Find Full Text PDFDiversity of phage propagation, physical properties, and assembly promotes the use of phages in ecological studies and biomedicine. However, observed phage diversity is incomplete. siphophage, 0105phi-7-2, first described here, significantly expands known phage diversity, as seen via in-plaque propagation, electron microscopy, whole genome sequencing/annotation, protein mass spectrometry, and native gel electrophoresis (AGE).
View Article and Find Full Text PDFProtein amyloid-β (Aβ) oligomers with β-sheet-like backbone (β-structured) form extracellular amyloid plaques associated with Alzheimer's disease (AD). However, the relationship to AD is not known. Some investigations suggest that the toxic Aβ component has α-sheet-like backbone (α-structured) subsequently detoxified by intracellular α-to-β conversion before plaque formation.
View Article and Find Full Text PDFPhage G is recognized as having a remarkably large genome and capsid size among isolated, propagated phages. Negative stain electron microscopy of the host-phage G interaction reveals tail sheaths that are contracted towards the distal tip and decoupled from the head-neck region. This is different from the typical myophage tail contraction, where the sheath contracts upward, while being linked to the head-neck region.
View Article and Find Full Text PDFBlood-borne therapeutic phages and phage capsids increasingly reach therapeutic targets as they acquire more persistence, i.e., become more resistant to non-targeted removal from blood.
View Article and Find Full Text PDFWe review some aspects of the rapid isolation of, screening for and characterization of jumbo phages, i.e., phages that have dsDNA genomes longer than 200 Kb.
View Article and Find Full Text PDFPharmaceuticals (Basel)
January 2020
Increased knowledge of virus assembly-generated particles is needed for understanding both virus assembly and host responses to virus infection. Here, we use a phage T3 model and perform electron microscopy (EM) of thin sections (EM-TS) of gel-supported T3 plaques formed at 30 °C. After uranyl acetate/lead staining, we observe intracellular black particles, some with a difficult-to-see capsid.
View Article and Find Full Text PDFBMC Res Notes
September 2019
Objective: Our immediate objective is to determine whether infectivity of lytic podophage T3 has a relatively high persistence in the blood of a mouse, as suggested by previous data. Secondarily, we determine whether the T3 surface has changed during this mouse passage. The surface is characterized by native agarose gel electrophoresis (AGE).
View Article and Find Full Text PDFObjective: Our immediate objective is to test the data-suggested possibility that in-agarose gel bacterial propagation causes gel fiber dislocation and alteration of cell distribution. We also test the further effect of lowering water activity. We perform these tests with both Gram-negative and Gram-positive bacteria.
View Article and Find Full Text PDFStudies of phage capsids have at least three potential interfaces with nanomedicine. First, investigation of phage capsid states potentially will provide therapies targeted to similar states of pathogenic viruses. Recently detected, altered radius-states of phage T3 capsids include those probably related to intermediate states of DNA injection and DNA packaging (dynamic states).
View Article and Find Full Text PDFMature double-stranded DNA bacteriophages have capsids with symmetrical shells that typically resist disruption, as they must to survive in the wild. However, flexibility and associated dynamism assist function. We describe biochemistry-oriented procedures used to find previously obscure flexibility for capsids of the related phages, T3 and T7.
View Article and Find Full Text PDFAdenosine triphosphate (ATP) cleavage powers packaging of a double-stranded DNA (dsDNA) molecule in a pre-assembled capsid of phages that include T3. Several observations constitute a challenge to the conventional view that the shell of the capsid is energetically inert during packaging. Here, we test this challenge by analyzing the in vitro effects of ATP on the shells of capsids generated by DNA packaging in vivo.
View Article and Find Full Text PDFWe argue that a paradigm shift is needed in the analysis of phage DNA packaging. We then test a prediction of the following paradigm shift-engendering hypothesis. The motor of phage DNA packaging has two cycles: (1) the well-known packaging ATPase-driven (type 1) cycle and (2) a proposed back-up, shell expansion/contraction-driven (type 2) cycle that reverses type 1 cycle stalls by expelling accidentally packaged non-DNA molecules.
View Article and Find Full Text PDFMany dsDNA viruses first assemble a DNA-free procapsid, using a scaffolding protein-dependent process. The procapsid, then, undergoes dramatic conformational maturation while packaging DNA. For bacteriophage T7 we report the following four single-particle cryo-EM 3D reconstructions and the derived atomic models: procapsid (4.
View Article and Find Full Text PDFDNA packaging of phages phi29, T3 and T7 sometimes produces incompletely packaged DNA with quantized lengths, based on gel electrophoretic band formation. We discover here a packaging ATPase-free, in vitro model for packaged DNA length quantization. We use directed evolution to isolate a five-site T3 point mutant that hyper-produces tail-free capsids with mature DNA (heads).
View Article and Find Full Text PDFDrug development has typically been a primary foundation of strategy for systematic, long-range management of pathogenic cells. However, drug development is limited in speed and flexibility when response is needed to changes in pathogenic cells, especially changes that produce drug-resistance. The high replication speed and high diversity of phages are potentially useful for increasing both response speed and response flexibility when changes occur in either drug resistance or other aspects of pathogenic cells.
View Article and Find Full Text PDFMotor-driven packaging of a dsDNA genome into a preformed protein capsid through a unique portal vertex is essential in the life cycle of a large number of dsDNA viruses. We have used single-particle electron cryomicroscopy to study the multilayer structure of the portal vertex of the bacteriophage T7 procapsid, the recipient of T7 DNA in packaging. A focused asymmetric reconstruction method was developed and applied to selectively resolve neighboring pairs of symmetry-mismatched layers of the portal vertex.
View Article and Find Full Text PDFWe find a new aspect of DNA packaging-associated structural fluidity for phage T3 capsids. The procedure is (i) glutaraldehyde cross-linking of in vivo DNA packaging intermediates for the stabilization of structure and then (ii) determining effective radius by two-dimensional agarose gel electrophoresis (2D-AGE). The intermediates are capsids with incompletely packaged DNA (ipDNA) and without an external DNA segment; these intermediates are called ipDNA-capsids.
View Article and Find Full Text PDFEvidence that in vivo bacteriophage T3 DNA packaging includes capsid hyper-expansion that is triggered by lengthening of incompletely packaged DNA (ipDNA) is presented here. This evidence includes observation that some of the longer ipDNAs in T3-infected cells are packaged in ipDNA-containing capsids with hyper-expanded outer shells (HE ipDNA-capsids). In addition, artificially induced hyper-expansion is observed for the outer shell of a DNA-free capsid.
View Article and Find Full Text PDFThe tightly packaged double-stranded DNA (dsDNA) genome in the mature particles of many tailed bacteriophages has been shown to form multiple concentric rings when reconstructed from cryo-electron micrographs. However, recent single-particle DNA packaging force measurements have suggested that incompletely packaged DNA (ipDNA) is less ordered when it is shorter than approximately 25% of the full genome length. The study presented here initially achieves both the isolation and the ipDNA length-based fractionation of ipDNA-containing T3 phage capsids (ipDNA-capsids) produced by DNA packaging in vivo; some ipDNA has quantized lengths, as judged by high-resolution gel electrophoresis of expelled DNA.
View Article and Find Full Text PDFBackground: Electron micrographs of bacteriophage T7 reveal a tail shorter than needed to reach host cytoplasm during infection-initiating injection of a T7 DNA molecule through the tail and cell envelope. However, recent data indicate that internal T7 proteins are injected before the DNA molecule is injected. Thus, bacteriophage/host adsorption potentially causes internal proteins to become external and lengthen the tail for DNA injection.
View Article and Find Full Text PDF