Publications by authors named "Elena Soddu"

We designed a delivery system to obtain an efficient and optimal nose-to-brain transport of BACE1 siRNA, potentially useful in the treatment of Alzheimer's disease. We selected a cell-penetrating peptide, the short peptide derived from rabies virus glycoprotein known as RVG-9R, to increase the transcellular pathway in neuronal cells. The optimal molar ratio between RVG-9R and BACE1 siRNA was elucidated.

View Article and Find Full Text PDF

β-Amyloid (Aβ) plaques are the key neurotoxic assemblies in Alzheimer disease. It has been suggested that an interaction occurs between membrane cholesterol and Aβ aggregation in the brain. Cyclodextrins can remove cholesterol from cell membranes and change receptor function.

View Article and Find Full Text PDF

Central nervous system (CNS) diseases are hard to diagnose and therapeutically target due to the blood brain barrier (BBB), which prevents most drugs from reaching their sites of action within the CNS. Brain drug delivery systems were conceived to bypass the BBB and were derived from anatomical and functional analysis of the BBB; this analysis led researchers to take advantage of brain endothelial membrane physiology to allow drug access across the BBB. Both receptors and carriers can be used to transport endogenous and exogenous substances into the CNS.

View Article and Find Full Text PDF

We propose the formulation and characterization of solid microparticles as nasal drug delivery systems able to increase the nose-to-brain transport of deferoxamine mesylate (DFO), a neuroprotector unable to cross the blood brain barrier and inducing negative peripheral impacts. Spherical chitosan chloride and methyl-β-cyclodextrin microparticles loaded with DFO (DCH and MCD, respectively) were obtained by spray drying. Their volume-surface diameters ranged from 1.

View Article and Find Full Text PDF

Cocoa butter (CB) is a largely used excipient in pharmaceutical field. Aim of this work was to set formulative parameters for the preparation of SLN based on "green" lipid matrix for drug delivery as natural, both human and environmental safe systems. Double emulsion technique (w1/o/w2) was selected for SLN preparation.

View Article and Find Full Text PDF