Messenger RNA (mRNA) therapies are emerging in different disease areas, but have not yet reached the kidney field. Our aim was to study the feasibility to treat the genetic defect in cystinosis using synthetic mRNA in cell models and ctns zebrafish embryos. Cystinosis is a prototype lysosomal storage disorder caused by mutations in the CTNS gene, encoding the lysosomal cystine-H symporter cystinosin, and leading to cystine accumulation in all cells of the body.
View Article and Find Full Text PDFChronic kidney disease (CKD) is a major healthcare burden that takes a toll on the quality of life of many patients. Emerging evidence indicates that a substantial proportion of these patients carry a genetic defect that contributes to their disease. Any effort to reduce the percentage of patients with a diagnosis of nephropathy heading towards kidney replacement therapies should therefore be encouraged.
View Article and Find Full Text PDFNephropathic cystinosis is a rare and severe disease caused by disruptions in the gene. Cystinosis is characterized by lysosomal cystine accumulation, vesicle trafficking impairment, oxidative stress, and apoptosis. Additionally, cystinotic patients exhibit weakening and leakage of the proximal tubular segment of the nephrons, leading to renal Fanconi syndrome and kidney failure early in life.
View Article and Find Full Text PDFAdult granulosa cell tumors (AGCTs) arise from the estrogen-producing granulosa cells. Treatment of recurrence remains a clinical challenge, as systemic anti-hormonal treatment or chemotherapy is only effective in selected patients. We established a method to rapidly screen for drug responses in vitro using direct patient-derived cell lines in order to optimize treatment selection.
View Article and Find Full Text PDF