Eur Phys J E Soft Matter
June 2021
We study theoretically internal flows in isotropic droplets formed in horizontal free-standing smectic films (FSSF) overheated above the bulk smectic-isotropic transition. The convection is due to vertical temperature gradient in the film and is driven by the surface tension variations at the drop interfaces. Using a conventional linear instability theory, we have found analytically the conditions under which the mechanical equilibrium within isotropic droplets in FSSFs becomes unstable relative to the thermocapillary convection.
View Article and Find Full Text PDFA theoretical study of the interaction and coalescence of isotropic droplets in overheated free-standing smectic films (FSSF) is presented. Experimentally it is clear that merging of such droplets is extremely rare. On the basis of the general thermodynamic approach to the stability of FSSF, we determined the energy gains and losses involved in the coalescence process.
View Article and Find Full Text PDFEur Phys J E Soft Matter
March 2017
We present a theoretical explanation for the formation of nematic droplets in free-standing smectic films (FSSF) overheated above the temperature of the bulk smectic - nematic transition. The conditions for the formation of the nematic droplets in smectic films are studied on the basis of the general thermodynamic approach to the stability of FSSF. It is shown that the formation of droplets in overheated FSSF is only possible in the presence of a certain amount of thermally generated dislocation loops.
View Article and Find Full Text PDFEur Phys J E Soft Matter
March 2015
We present a theoretical explanation of the remarkable thickness instabilities that occur in free-standing smectic films (FSSF) upon changing the external conditions: i) upon heating the film above the bulk smectic disordering temperature, generally the film does not rupture but instead shows successive layer-by-layer thinning transitions; ii) thickening of FSSF, which occurs within the thermal range of the smectic phase upon local heating. All observations reported so far can be explained on the basis of the Landau-de Gennes theory of the smectic state in combination with nucleation theory. In overheated smectic films (thinning) or locally heated FSSF (thickening) an additional normal tensile force appears due to a change of the mean density of the film.
View Article and Find Full Text PDF