Publications by authors named "Elena S Nassonova"

Aphelids are a holomycotan group, represented exclusively by parasitoids infecting algae. They form a sister lineage to Fungi in the phylogenetic tree and represent a key group for reconstruction of the evolution of Holomycota and for analysis of the origin of Fungi. The newly assembled genome of (Holomycota, Aphelida) with a total length of 18.

View Article and Find Full Text PDF

Metchnikovellids (Microsporidia: Metchnikovellida) are poorly studied hyperparasitic microsporidia that live in gregarines inhabiting the intestines of marine invertebrates, mostly polychaetes. Our recent studies showed that diversity of metchnikovellids might be significantly higher than previously thought, even within a single host. Four species of metchnikovellids were found in the gregarines inhabiting the gut of the polychaete Pygospio elegans from littoral populations of the White and Barents Seas: the eugregarine Polyrhabdina pygospionis is the host for Metchnikovella incurvata and M.

View Article and Find Full Text PDF

Metchnikovellids are a deep-branching group of microsporidia, parasites of gregarines inhabiting the alimentary tract of polychaetes and some other invertebrates. The diversity and phylogeny of these hyperparasites remain poorly studied. Modern descriptions and molecular data are still lacking for many species.

View Article and Find Full Text PDF

The species Metchnikovella dogieli (Paskerova et al. Protistology 10:148-157, 2016) belongs to one of the early diverging microsporidian groups, the metchnikovellids (Microsporidia: Metchnikovellidae). In relation to typical ('core') microsporidia, this group is considered primitive.

View Article and Find Full Text PDF

We have obtained a sequence of the 18S rRNA gene of the species Polychaos annulatum (Penard 1902) Smirnov et Goodkov 1998 using the isolation of a single nucleus from an amoeba cell. Attempts to amplify the 18S rRNA gene from the DNA of this species by conventional PCR were not successful, so we applied the whole genome amplification of the nuclear DNA followed by NGS sequencing. The 18S rRNA gene was found among the resulting contigs.

View Article and Find Full Text PDF

Mitochondrial genome sequence of Vannella croatica (Amoebozoa, Discosea, Vannellida) was obtained using pulse-field gel electrophoretic isolation of the circular mitochondrial DNA, followed by the next-generation sequencing. The mitochondrial DNA of this species has the length of 28,933 bp and contains 12 protein-coding genes, two ribosomal RNAs, and 16 transfer RNAs. Vannella croatica mitochondrial genome is relatively short compared to other known amoebozoan mitochondrial genomes but is rather gene-rich and contains significant number of open reading frames.

View Article and Find Full Text PDF

Morphological identification of protists remains an expert task, especially for little known and poorly described species. Culture collections normally accept organisms under the name provided by depositors and are not responsible for identification. Uncritical acceptance of these names by molecular phylogeneticists may result in serious errors of interpretation of phylogenetic trees based on DNA sequences, making them appear more incongruent with morphology than they really are.

View Article and Find Full Text PDF

We sequenced 18S rRNA genes from 21 vannellid amoebae (Amoebozoa; Vannellidae), including nearly all available type cultures, and performed a comprehensive phylogenetic analysis for 57 Vannellidae sequences. The results show that species of Vannella and Platyamoeba are completely mixed and do not form distinct clades. Several very closely related species pairs exist, each with a Vannella and a Platyamoeba species differing in only a few nucleotides.

View Article and Find Full Text PDF

Two microsporidian genera, AnncaliiaIssi, Krylova, & Nicolaeva 1993 and BrachiolaCali et al. 1998, possess a Nosema-type life cycle and unique cell surface ornamentations, which include precocious electron-dense coating of the plasmalemma and a variety of secretory structures deposited on the parasite surface and scattered in the host cell cytoplasm. Comparative analysis of ultrastructure of Anncaliia meligethi (the type species of the genus Anncaliia) and of B.

View Article and Find Full Text PDF