Publications by authors named "Elena Ryabchikova"

A protein corona is present on any nanoparticle (NP) entering biological fluids; however, the existence of a natural protein corona on natural NPs has not been experimentally confirmed. We used our previously developed photomodification method to fix the natural corona on "biological nanoparticles" (bio-NPs) in fetal bovine serum and newborn bovine serum; native sera served as a control. To isolate photomodified bio-NPs, we used ultracentrifugation (UC), sucrose gradient (12%, 30%, and 50%), and sucrose cushion (30%) methods.

View Article and Find Full Text PDF

A protein corona (PC) is formed and maintained on the surface of any nanoparticle (NP) introduced into biological media. The full PC is formed by a hard and soft corona, and the latter determines the nature of the interaction of NPs with cells and the body's liquids. Nanomedicines are becoming increasingly important in modern health services, making information about the composition of PCs on the surface of NPs critically important for "managing" the behavior of nano-objects in the body.

View Article and Find Full Text PDF

The composition of the protein corona covering any nanoparticle (NP) when it enters a biological fluid determines the parameters of the NP's interaction with the body. To "control" these parameters, it is important to know the composition of the protein corona, the determination of which is a complex task associated with the two-layer organization of the corona (hard and soft coronas). In a previous publication, we reported obtaining lipid-coated NPs with a full protein corona, isolating them, and proving the presence of the corona on the surface of the NPs.

View Article and Find Full Text PDF

Bacteria of the genus are significant challenge for medicine, as many species are resistant to multiple antibiotics and some are even to all of the antibiotics we use. One of the approaches to developing new therapeutics to treat staphylococcal infections is the use of bacteriophages specific to these bacteria or the lytic enzymes of such bacteriophages, which are capable of hydrolyzing the cell walls of these bacteria. In this study, a new bacteriophage vB_SepP_134 (St 134) specific to was described.

View Article and Find Full Text PDF

Spontaneous sorption of proteins on the nanoparticles' surface leads to the fact that nanoparticles in biological media are always enveloped by a layer of proteins-the protein corona. Corona proteins affect the properties of nanoparticles and their behavior in a biological environment. In this regard, knowledge about the composition of the corona is a necessary element for the development of nanomedicine.

View Article and Find Full Text PDF

The interaction of cold atmospheric plasma (CAP) with biotargets is accompanied by chemical reactions on their surfaces and insides, and it has great potential as an anticancer approach. This study discovers the molecular mechanisms that may explain the selective death of tumor cells under CAP exposure. To reach this goal, the transcriptional response to CAP treatment was analyzed in A549 lung adenocarcinoma cells and in lung-fibroblast Wi-38 cells.

View Article and Find Full Text PDF

A template-assisted assembly approach to a C fullerene-like double-stranded DNA polyhedral shell is proposed. The assembly employed a supramolecular oligonucleotide dendrimer as a 3D template that was obtained via the hybridization of siRNA strands and a single-stranded DNA oligonucleotide joined to three- or four-way branched junctions. A four-way branched oligonucleotide building block (a ) was designed for the assembly of the shell composed of three identical self-complementary DNA single strands and a single RNA strand for hybridization to the DNA oligonucleotides of the template.

View Article and Find Full Text PDF

The purposeful development of synthetic antibacterial compounds requires an understanding of the relationship between effects of compounds and their chemical structure. This knowledge can be obtained by studying changes in bacteria ultrastructure under the action of antibacterial compounds of a certain chemical structure. Our study was aimed at examination of ultrastructural changes in cells caused by polycationic amphiphile based on 1,4‒diazabicyclo[2.

View Article and Find Full Text PDF

Extracellular vesicles (EVs), carriers of molecular signals, are considered a critical link in maintaining homeostasis in mammals. Currently, there is growing interest in studying the role of EVs, including exosomes (subpopulation of EVs), in animals of other evolutionary levels, including marine invertebrates. We have studied the possibility of obtaining appropriate preparations of EVs from whole-body extract of holothuria using a standard combination of centrifugation and ultracentrifugation.

View Article and Find Full Text PDF
Article Synopsis
  • Cold atmospheric plasma (CAP) shows potential in treating cancer by selectively targeting malignant cells while sparing healthy cells, though the exact mechanisms of interaction are not fully understood.
  • In experiments with lung cancer cell lines, CAP treatment significantly reduced cancer cell viability while only slightly affecting healthy lung cells, suggesting a semi-selective approach to treatment.
  • The study found that combining CAP with the autophagy inhibitor chloroquine (CQ) enhanced cancer cell death by disrupting mitochondrial function and autophagy processes, indicating a promising direction for future cancer therapies.
View Article and Find Full Text PDF

is one of the environmental species. A number of factors of virulence have been described for this species and it has been reported as a causative agent of urinary tract infection. The first bacteriophage AerP_220 along with its host strain CEMTC 4062 were isolated from river water.

View Article and Find Full Text PDF

Small interfering RNAs (siRNAs) are a powerful tool for specific suppression of protein synthesis in the cell, and this determines the attractiveness of siRNAs as a drug. Low resistance of siRNA to nucleases and inability to enter into target cells are the most crucial issues in developing siRNA-based therapy. To face this challenge, we designed multilayer nanoconstruct (MLNC) with AuNP core bearing chemically modified siRNAs.

View Article and Find Full Text PDF

Exosomes are nanovesicles with a 40-150 nm diameter and are essential for communication between cells. Literature data suggest that exosomes obtained from different sources (cell cultures, blood plasma, urea, saliva, tears, spinal fluid, milk) using a series of centrifugations and ultracentrifugations contain hundreds and thousands of different protein and nucleic acid molecules. However, most of these proteins are not an intrinsic part of exosomes; instead, they co-isolate with exosomes.

View Article and Find Full Text PDF

Extracellular vesicles (EVs) produced by various cell types are heterogeneous in size and composition. Changes in the RNA sets of EVs in biological fluids are considered the basis for the development of new approaches to minimally invasive diagnostics and the therapy of human diseases. In this study, EVs were obtained from the blood of healthy donors by centrifugation, followed by ultracentrifugation.

View Article and Find Full Text PDF

There is an urgent need to develop systems for nucleic acid delivery, especially for the creation of effective therapeutics against various diseases. We have previously shown the feasibility of efficient delivery of small interfering RNA by means of gold nanoparticle-based multilayer nanoconstructs (MLNCs) for suppressing reporter protein synthesis. The present work is aimed at improving the quality of preparations of desired MLNCs, and for this purpose, optimal conditions for their multistep fabrication were found.

View Article and Find Full Text PDF

Small interfering RNA (siRNA) is the most important tool for the manipulation of mRNA expression and needs protection from intracellular nucleases when delivered into the cell. In this work, we examined the effects of siRNA modification with the phosphoryl guanidine (PG) group, which, as shown earlier, makes oligodeoxynucleotides resistant to snake venom phosphodiesterase. We obtained a set of siRNAs containing combined modifications PG/2'-O-methyl (2'-OMe) or PG/2'-fluoro (2'-F); biophysical and biochemical properties were characterized for each duplex.

View Article and Find Full Text PDF

Fluorophore (FD) labeling is widely used for detection and quantification of various compounds bound to nanocarriers. The systems, composed of gold nanoparticles (GNPs) and oligonucleotides (ONs) labeled with FDs, have wide applications. Our work was aimed at a systemic study of how FD structure (in composition of ON-FDs) influenced the efficiency of their non-covalent associates' formation with GNPs (ON-FD/GNPs).

View Article and Find Full Text PDF

The naked mole rat (NMR), is the longest-living rodent species, and is extraordinarily resistant to cancer and aging-related diseases. The molecular basis for these unique phenotypic traits of the NMR is under extensive research. However, the role of regulated cell death (RCD) in the longevity and the protection from cancer in the NMR is still largely unknown.

View Article and Find Full Text PDF

Multifunctional gold nanoparticles (AuNPs) may serve as a scaffold to integrate diagnostic and therapeutic functions into one theranostic system, thereby simultaneously facilitating diagnosis and therapy and monitoring therapeutic responses. Herein, albumin-AuNP theranostic agents have been obtained by conjugation of an anticancer nucleotide trifluorothymidine (TFT) or a boron-neutron capture therapy drug undecahydro--dodecaborate (BH) to bimodal human serum albumin (HSA) followed by reacting of the albumin conjugates with AuNPs. In vitro studies have revealed a stronger cytotoxicity by the AuNPs decorated with the TFT-tagged bimodal HSA than by the boronated albumin conjugates.

View Article and Find Full Text PDF

Biomedicine is actively developing a methodological network that brings together biological research and its medical applications [...

View Article and Find Full Text PDF

Antimicrobial peptides, including synthetic ones, are becoming increasingly important as a promising tool to fight multidrug-resistant bacteria. We examined the effect of cationic peptides HN-Arg-Phe-C(O)NH and HN-(Lys-Phe-Phe)-Lys-C(O)NH on , which remains one of the most harmful pathogens. Antiseptic chlorhexidine served as reference preparation.

View Article and Find Full Text PDF

Use of multicellular spheroids in studies of nanoparticles (NPs) has increased in the last decade, however details of NPs interaction with spheroids are poorly known. We synthesized AuNPs (12.0 ± 0.

View Article and Find Full Text PDF

is becoming increasingly harmful for humans, which determines the need for new effective antifungal preparations. Currently, when testing antifungals, various morphological methods are used, among which transmission electron microscopy (TEM) is not the leading one. In this work, we used TEM to study the submicroscopic changes in cells induced by cationic peptides R9F2 and (KFF)3K.

View Article and Find Full Text PDF

The cooperative thermomechanical properties of plant-derived polymers have been studied insufficiently, although this feedstock has a very high potential. In the present paper, we analyzed the changes in the structure and physicochemical properties of lignin-rich biomass induced by thermomechanical pretreatment. Low-temperature treatment allows one to retain the original supramolecular structure of the cell walls, while an appreciably high disintegration degree is reached.

View Article and Find Full Text PDF

Gold nanoparticles (AuNPs) are a platform for the creation of nanoconstructions that can have a variety of functions, including the delivery of therapeutic nucleic acids. We previously designed a AuNP/small interfering RNA (siRNA) nanoconstruction consisting of siRNA noncovalently bound on the AuNP surface and showed that this construction, when coated with a lipid shell, was an efficient vehicle for the delivery of siRNA into cells. The goal of the present work was to study the possibility of scaling up the synthesis of AuNP-siRNA and its long-term storage without loss of physicochemical characteristics and siRNA duplex integrity as well as siRNA surface density.

View Article and Find Full Text PDF