CD4 T lymphocytes have been classified into several lineages, according to their gene expression profiles and their effector responses. Interestingly, recent evidence is showing that many lineages could yield hybrid phenotypes with unique properties and functions. It has been reported that such hybrid lineages might underlie pathologies or may function as effector cells with protection capacities against molecular threats.
View Article and Find Full Text PDFLeptin is a protein hormone that plays a key role in the regulation of energy balance and glucose homeostasis. Leptin and all leptin receptor isoforms are present in the carotid bodies, but its precise function in glucose regulation and metabolism is not yet known. The aim of this study was to determine whether exogenous leptin, microinjected into the commissural nucleus tractus solitarii (cNTS), preceding sodium cyanide (NaCN) injection into the circulatory isolated carotid sinus (ICS), in vivo, modifies hyperglycemic reflex (HR) and brain glucose retention (BGR).
View Article and Find Full Text PDFIntroduction: Brain-derived neurotrophic factor (BDNF) protein expression is sensitive to cellular activity. In the sedentary state, BDNF expression is affected by the muscle phenotype.
Methods: Eighteen Wistar rats were divided into the following 3 groups: sedentary (S); moderate-intensity training (MIT); and high-intensity training (HIT).
Background: Physical exercise improves glucose metabolism and insulin sensitivity. Brain-derived neurotrophic factor (BDNF) enhances insulin activity in diabetic rodents. Because physical exercise modifies BDNF production, this study aimed to investigate the effects of chronic exercise on plasma BDNF levels and the possible effects on insulin tolerance modification in healthy rats.
View Article and Find Full Text PDFNeuronal systems, which regulate energy intake, energy expenditure and endogenous glucose production, sense and respond to input from hormonal related signals that convey information from body energy availability. Carotid chemoreceptors (CChr) function as sensors for circulating glucose levels and contribute to glycemic counterregulatory responses. Brain-derived neurotrophic factor (BDNF) that plays an important role in the endocrine system to regulate glucose metabolism could play a role in hyperglycemic glucose reflex with brain glucose retention (BGR) evoked by anoxic CChr stimulation.
View Article and Find Full Text PDFThe carotid body receptors participate in glucose regulation sensing glucose levels in blood entering the cephalic circulation. The carotid body receptors information, is initially processed within the nucleus tractus solitarius (NTS) and elicits changes in circulating glucose and brain glucose uptake. Previous work has shown that gamma-aminobutyric acid (GABA) in NTS modulates respiratory reflexes, but the role of GABA within NTS in glucose regulation remains unknown.
View Article and Find Full Text PDFBackground: In addition to their role of sensing O2, pH, CO2, osmolarity and temperature, carotid body receptors (CBR) were proposed by us and others to have a glucose-sensing role in the blood entering the brain, integrating information about blood glucose and O2 levels essential for central nervous system (CNS) metabolism. The nucleus tractus solitarius (NTS) is an important relay station in central metabolic control and receives signals from peripheral glucose-sensitive hepatoportal afferences, from central glucose-responsive neurons in the brainstem and from CBR and arginine-vasopressin (AVP)-containing axons from hypothalamic nuclei.
Methods: In normal Wistar rats anesthetized with pentobarbital, permanent cannulas were placed stereotaxically in the NTS.
Hypoxic stimulation of the carotid body receptors (CBR) results in a rapid hyperglycemia with an increase in brain glucose retention. Previous work indicates that neurohypophysectomy inhibits this hyperglycemic response. Here, we show that systemic arginine vasopressin (AVP) induced a transient, but significant, increase in blood glucose levels and increased brain glucose retention, a response similar to that observed after CBR stimulation.
View Article and Find Full Text PDFIt is well established that the carotid body receptors (CBR), at the bifurcation of the carotid artery, inform the brain of changes in the concentration of CO(2) and O(2) in arterial blood. More recent work suggests that these receptors are also extremely sensitive to blood glucose levels suggesting that they may play an important role as sensors of blood components important for brain energy metabolism. Much less is known about changes in brain glucose metabolism in response to CBR activation.
View Article and Find Full Text PDF