We explored the conformational landscape of N-acetyl-α-d-glucosamine (α-GlcNAc), a fundamental chemical scaffold in glycobiology. Solid samples were vaporized by laser ablation, expanded in a supersonic jet, and characterized by broadband chirped pulse Fourier transform microwave spectroscopy. In the isolation conditions of the jet, three different structures of GlcNAc have been discovered.
View Article and Find Full Text PDF,-Diethyl-3-methylbenzamide (DEET) is the most widely used insect repellent, exhibiting high efficiency against a wide variety of species. In this work, a comprehensive isolated-molecule investigation of DEET was conducted using chirp-excitation Fourier transform microwave (CP-FTMW) spectroscopy within the frequency range of 7-14 GHz. Four out of the eight theoretically predicted conformers were detected and grouped in pairs based on their rotational constants and planar moments of inertia.
View Article and Find Full Text PDFAccording to old theories of sweetness, the perception of sweet substances is closely linked to the arrangement of atoms within them. To assess the validity of these theories, we conducted an analysis of the structure of the artificial sweetener dulcin for the first time, utilizing microwave spectroscopy and a laser ablation source. These techniques have enabled the identification of two conformers, which are stabilized by an intramolecular hydrogen bond between the amino group and the phenyl ring.
View Article and Find Full Text PDFAlthough structural information on sugars is wide, experimental studies on the oxidation products of sugars in the gas phase, free from solvent interactions, have been rarely reported. We present an experimental work on the changes in the structure and interactions of two products of glucose oxidation (D-glucono-1,5-lactone (GlcL) and D-glucurono-6,3-lactone (GlcurL)) with respect to their precursor. Features such as intramolecular interactions, ring puckering and tautomerism were observed.
View Article and Find Full Text PDFJ Phys Chem Lett
February 2024
6-Aminopenicillanic acid is a penicillanic acid compound and is the active nucleus common to all penicillins. Using laser ablation techniques, we transformed the solid into the gas phase and characterized its conformational panorama by combining supersonic expansions and Fourier transform microwave techniques. Five conformers were determined, adopting different spatial configurations.
View Article and Find Full Text PDFSpectrochim Acta A Mol Biomol Spectrosc
April 2023
DOPAC, a relevant scaffold in dopamine metabolism, was probed in the gas phase and interrogated by high-resolution rotational spectroscopy. Herein, three distinct conformers were isolated in a supersonic jet and identified for the first time through an examination of the trend of the rotational constants and the dipole moment selection rules. Additionally, we examined the plausible relaxation pathways of the low-energy conformers of DOPAC, which helped us to claim the indirect detection of two additional conformers, providing conclusive experimental evidence of the flexible nature of this biomolecule.
View Article and Find Full Text PDFWe report a detailed structural study of cytisine, an alkaloid used to help with smoking cessation, looking forward to unveiling its role as a nicotinic agonist. High-resolution rotational spectroscopy has allowed us to characterize two different conformers exhibiting axial and equatorial arrangements of the piperidinic NH group. Unexpectedly, the axial form has been found as the predominant configuration, in contrast to that observed for related molecules, such as piperidine.
View Article and Find Full Text PDFAn integrated experimental-computational strategy for the accurate characterization of the conformational landscape of flexible biomolecule building blocks is proposed. This is based on the combination of rotational spectroscopy with quantum-chemical computations guided by artificial intelligence tools. The first step of the strategy is the conformer search and relative stability evaluation performed by means of an evolutionary algorithm.
View Article and Find Full Text PDFWe used high-resolution rotational spectroscopy coupled to a laser ablation source to study the conformational panorama of perillartine, a solid synthetic sweetener. Four conformers were identified under the isolation conditions of the supersonic expansion, showing that all of them present an configuration of the C=N group with respect to the double bond of the ring. The observed structures were verified against Shallenberger-Acree-Kier's sweetness theory to shed light on the structure-sweetness relationship for this particular oxime, highlighting a deluge of possibilities to bind the receptor.
View Article and Find Full Text PDFHerein, we report the first rotational study of neutral L-DOPA, an extensively used supramolecular synthon and an amino acid precursor of the neurotransmitters dopamine, norepinephrine (noradrenaline), and epinephrine (adrenaline) using broadband and narrowband Fourier transform microwave spectroscopies coupled with a laser ablation vaporization system. The spectroscopic parameters derived from the analysis of the rotational spectrum conclusively identify the existence of four distinct conformers of L-DOPA in the supersonic jet, further rejecting the previously reported catechol ring-induced conformational restriction. The analysis of the N nuclear quadrupole coupling hyperfine structure further revealed the orientation of the N-bearing functional group, proving the existence of stabilizing N-H⋯π interactions for the observed structures.
View Article and Find Full Text PDFAngew Chem Int Ed Engl
November 2021
The large amount of unstable species in the realm of interstellar chemistry drives an urgent need to develop efficient methods for the in situ generations of molecules that enable their spectroscopic characterizations. Such laboratory experiments are fundamental to decode the molecular universe by matching the interstellar and terrestrial spectra. We propose an approach based on laser ablation of nonvolatile solid organic precursors.
View Article and Find Full Text PDFWe have successfully characterized the structure of testosterone, one of the essential steroids, through high-resolution rotational spectroscopy. A single conformer has been detected, and a total of 404 transitions have been fitted, allowing a precise determination of the rotational constants. It allowed us to unravel that the isolated structure of testosterone adopts an extended disposition.
View Article and Find Full Text PDFNew spectroscopic experiments and state-of-the-art quantum-chemical computations of creatinine in different aggregation states unequivocally unveiled a significant tuning of tautomeric equilibrium by the environment: from the exclusive presence of the amine tautomer in the solid state and aqueous solution to a mixture of amine and imine tautomers in the gas phase. Quantum-chemical calculations predict the amine species as the most stable tautomer by about 30 kJ mol in condensed phases. On the contrary, moving to the isolated forms, both Z and E imine isomers become more stable by about 7 kJ mol .
View Article and Find Full Text PDFThe unbiased, naked structures of tartaric acid, one of the most important organic compounds existing in nature and a candidate to be present in the interstellar medium, has been revealed in this work for the first time. Solid samples of its naturally occurring (R,R) enantiomer have been vaporized by laser ablation, expanded in a supersonic jet, and characterized by Fourier transform microwave spectroscopy. In the isolation conditions of the jet, we have discovered up to five different structures stabilized by intramolecular hydrogen-bond networks dominated by O-H⋅⋅⋅O=C and O-H⋅⋅⋅O motifs extended along the entire molecule.
View Article and Find Full Text PDFCycloserine has in common with isoxazolidines the saturated five-membered ring, which is an important scaffold for drug design, exhibiting diverse biological activities. The most remarkable feature of these compounds is the presence of the N-O bond framed in a cyclic moiety. The lack of an accurate characterization of this structural feature in an isolated system calls for a state-of-the-art theoretical-experimental study.
View Article and Find Full Text PDFRotational spectroscopy provides the most powerful means of identifying molecules of biological interest in the interstellar medium (ISM), but despite their importance, the detection of carbohydrates has remained rather elusive. Here, we present a comprehensive Fourier transform rotational spectroscopic study of elusive erythrulose, a sugar building block likely to be present in the ISM, employing a novel method of transferring the hygroscopic oily carbohydrate into the gas phase. The high sensitivity of the experiment allowed the rotational spectra of all monosubstituted isotopologue species of C-CHO to be recorded, which, together with quantum chemical calculations, enabled us to determine their equilibrium geometries () with great precision.
View Article and Find Full Text PDFNon-covalent interactions between molecules determine molecular recognition and the outcome of chemical and biological processes. Characterising how non-covalent interactions influence binding preferences is of crucial importance in advancing our understanding of these events. Here, we analyse the interactions involved in smell and specifically the effect of changing the balance between hydrogen-bonding and dispersion interactions by examining the complexes of the common odorant fenchone with phenol and benzene, mimics of tyrosine and phenylalanine residues, respectively.
View Article and Find Full Text PDFNeutral glutamine has been evaporated by laser ablation of its solid sample to seed a rare gas carrier prior to a supersonic expansion and proved by Fourier transform microwave techniques. We report on three distinct neutral conformers that show a singular non-interacting and flexible amide sidechain in contrast with the other proteinogenic aliphatic amino acids. It could explain the essential biological role of glutamine as a nitrogen source, and its unique ability to form a variety of hydrogen bonds with peptide backbones.
View Article and Find Full Text PDFHerein, a full structural description is presented for the archetypical supramolecular synthone squaric acid (3,4-dihydroxy-3-cyclobutene-1,2-dione), placed in the gas phase by laser ablation and characterized by chirped pulse Fourier transform microwave technique. Free from natural environmental disturbances, two different anti-anti and syn-anti planar forms and the corresponding water clusters have been revealed in a supersonic expansion. The substitution structure of the most stable anti-anti conformer has also been extracted from the analysis of the rotational spectra of the C and O isotopic species in their natural abundance.
View Article and Find Full Text PDFWe present the first high-resolution rotational study of the artificial sweetener saccharin. By combining laser ablation (LA), narrow- and broadband Fourier transform microwave techniques (FTMW), and supersonic expansions, we have transferred the solid of saccharin (mp 229 °C) to a supersonic jet and captured its rotational spectrum. The rotational constants were accurately determined by fitting more than 60 rotational transitions for the parent and S isotopic species in the 6.
View Article and Find Full Text PDFIn the course of the investigation of the rotational spectrum of prebiotic hydantoic acid by Fourier transform microwave spectroscopy coupled to a laser ablation source in a supersonic expansion, rotational signatures of two cyclic molecules, hydantoin and 2,5-oxazolidinedione, have been unexpectedly observed along with the four most stable conformers of hydantoic acid. Interestingly, two of them presented folded geometric arrangements that might act as precursors in the cyclization reactions assisted by laser ablation. They could play the role of near-attack conformations (NACs) in the framework of the NAC theory for intramolecular reactions.
View Article and Find Full Text PDFThe simplest non-proteinogenic amino acid α-aminoisobutyric acid (Aib), an analogue of glycine and alanine, has been vaporized by laser ablation and probed by high-resolution Fourier transform microwave spectroscopic techniques. Comparison of the experimental rotational and N nuclear quadrupole constants with that predicted ab initio has allowed the identification of three conformers of Aib exhibiting three types of hydrogen-bond interactions I (NH⋅⋅⋅O=C, cis-COOH), II (OH⋅⋅⋅N, trans-COOH), and III (N-H⋅⋅⋅O-H, cis-COOH) within the amino acid backbone. The observation of conformer III, not detected previously for related proteinogenic amino acids with a nonpolar side chain in a supersonic expansion, indicates that the presence of the methyl groups should restrict the conformational relaxation from conformer Aib-III to Aib-I.
View Article and Find Full Text PDFA gas-phase study on the artificial sweeteners sorbitol and dulcitol has been carried out for the first time by using a combination of chirped-pulse Fourier-transform microwave (CP-FTMW) spectroscopy and laser ablation (LA). The isolation conditions provided by the supersonic expansion reveal the intrinsic conformational structures of these sweeteners. The three and five observed conformers for sorbitol and dulcitol, respectively, are stabilized by networks of cooperative intramolecular hydrogen bonds between vicinal hydroxyl groups in clockwise or counterclockwise arrangements.
View Article and Find Full Text PDFConformational flexibility and non-covalent interactions determine the structure and activity of molecules in biological processes. In this work, the hydrogen bonding networks of the polyol ribitol have been determined for the first time using a combination of laser ablation and broadband rotational spectroscopy. Five conformations of ribitol have been identified, two with extended carbon chains and three with bent chains.
View Article and Find Full Text PDF