Publications by authors named "Elena Pontemezzo"

Cancer cells modulate their metabolism, creating an acidic microenvironment that, in turn, can favor tumor progression and chemotherapy resistance. Tumor cells adopt strategies to survive a drop in extracellular pH (pHe). In the present manuscript, we investigated the contribution of mitochondrial sirtuin 3 (SIRT3) to the adaptation and survival of cancer cells to a low pHe.

View Article and Find Full Text PDF

Purpose: The study aims to summarize current knowledge on the use of oil in embryo culture systems, with a focus on proper management of different types of oil and possible impact on culture systems.

Methods: PubMed was used to search the MEDLINE database for peer-reviewed English-language original articles and reviews concerning the use of oil in embryo culture systems. Searches were performed by adopting "embryo," "culture media," "oil," and "contaminants" as main terms.

View Article and Find Full Text PDF

Recent findings suggest that epithelial to mesenchymal transition (EMT), a key step during heart development, is involved in cardiac tissue repair following myocardial infarction (MI). MicroRNAs (miRNAs) act as key regulators in EMT processes; however, the mechanisms by which miRNAs target epicardial EMT remain largely unknown. Here, by using an model of epicardial EMT, we investigated the role of miRNAs as regulators of this process and their potential targets.

View Article and Find Full Text PDF

Background: Substantial evidences support the hypothesis that the epicardium has a role in cardiac repair and regeneration in part providing, by epithelial to mesenchymal transition (EMT), progenitor cells that differentiate into cardiac cell types and in part releasing paracrine factors that contribute to cardiac repair. Besides cell contribution, a significant paracrine communication occurs between the epicardium and the myocardium that improves the whole regenerative response. Signaling pathways underlying this communication are multiple as well as soluble factors involved in cardiac repair and secreted both by myocardial and epicardial cells.

View Article and Find Full Text PDF

High-mobility group box 1 (HMGB1) is one of the most abundant proteins in eukaryotes and the best characterized damage-associated molecular pattern (DAMP). The biological activities of HMGB1 depend on its subcellular location, context and post-translational modifications. Inside the nucleus, HMGB1 is engaged in many DNA events such as DNA repair, transcription regulation and genome stability; in the cytoplasm, its main function is to regulate the autophagic flux while in the extracellular environment, it possesses more complicated functions and it is involved in a large variety of different processes such as inflammation, migration, invasion, proliferation, differentiation and tissue regeneration.

View Article and Find Full Text PDF

The regenerative effects of cardiac ckit stem cells (ckitCSCs) in acute myocardial infarction (MI) have been studied extensively, but how these cells exert a protective effect on cardiomyocytes is not well known. Growing evidences suggest that in adult stem cells injury triggers inflammatory signaling pathways which control tissue repair and regeneration. Aim of the present study was to determine the mechanisms underlying the cardioprotective effects of ckitCSCs following transplantation in a murine model of MI.

View Article and Find Full Text PDF