This study aimed to enhance the initial adhesion performance of reactive polyurethane hot-melt adhesives by using a bio-based polycarbonate polyol instead of traditional polyester or polyether polyols and by incorporating thermoplastic polyurethane (TPU) in varied proportions. Adhesives synthesized from bio-based polycarbonate polyols and polypropylene glycol with MDI as the isocyanate were characterized chemically, thermally, and mechanically (FTIR, DSC, plate-plate rheology, DMA, and T-peel strength test). Adding 10-15 wt.
View Article and Find Full Text PDFPolymers (Basel)
November 2024
The increasing concern for sustainability in the footwear industry has spurred the exploration of eco-friendly alternatives for materials commonly used in sole manufacturing. This study examined the effect of incorporating rice straw and cellulose as fillers into soles made from either styrene-butadiene rubber (SBR) or thermoplastic polyurethane (TPU). Both fillers were used as a substitute in mass percentages ranging from 5 to 20% in the original SBR and TPU formulas, and their impact on mechanical properties such as abrasion and tear resistance, as well as thermal properties, was thoroughly evaluated.
View Article and Find Full Text PDFIn response to the environmental impacts of conventional polyurethane adhesives derived from fossil fuels, this study introduces a sustainable alternative utilizing lignin-based polyols extracted from rice straw through a process developed at INESCOP. This research explores the partial substitution of traditional polyols with lignin-based equivalents in the synthesis of reactive hot melt polyurethane adhesives (HMPUR) for the footwear industry. The performance of these eco-friendly adhesives was rigorously assessed through Thermogravimetric Analysis (TGA), Differential Scanning Calorimetry (DSC), rheological analysis, and T-peel tests to ensure their compliance with relevant industry standards.
View Article and Find Full Text PDFIn this study, the biodegradation properties of leather treated with various finishing chemicals were evaluated in order to enhance the sustainability of leather processing. We applied advanced analytical techniques, including FT-IR, thermogravimetric analysis (TGA), and solid-state NMR spectroscopy. Leather samples treated with different polymers, resins, bio-based materials, and traditional finishing agents were subjected to a composting process under controlled conditions to measure their biodegradability.
View Article and Find Full Text PDFTanning, crucial for leather production, relies heavily on chromium yet poses risks due to chromium's oxidative conversion, leading to significant wastewater and solid waste generation. Physico-chemical methods are typically used for heavy metal removal, but they have drawbacks, prompting interest in eco-friendly biological remediation techniques like biosorption, bioaccumulation, and biotransformation. The EU Directive (2018/850) mandates alternatives to landfilling or incineration for industrial textile waste management, highlighting the importance of environmentally conscious practices for leather products' end-of-life management, with composting being the most researched and viable option.
View Article and Find Full Text PDFCovalent adaptable networks (CANs) represent a pioneering advance in polymer science, offering unprecedented versatility in materials design. Unlike conventional adhesives with irreversible bonds, CAN-based polyurethane adhesives have the unique ability to undergo chemical restructuring through reversible bonds. One of the strategies for incorporating these types of reactions in polyurethanes is by functionalisation with Diels-Alder (DA) adducts.
View Article and Find Full Text PDFThis paper briefly discusses the utilization of pruning wastes as a lignocellulosic source of cellulose fibers, which could be of potential use in the development of valuable materials such as sustainable textiles and fillers for footwear components including uppers and soles. palm leaves, one of the most common plants found in the local environment of the Alicante region (Spain), was used as a biomass raw material. Determining appropriate processing parameters and their desired range of maximum cellulose extraction states is key to improving yields.
View Article and Find Full Text PDFIn this study, functional nanocoatings for water-repellent footwear leather materials were investigated by chemical plasma polymerisation by implanting and depositing the organosilicon compound hexamethyldisiloxane (HMDSO) using a low-pressure plasma system. To this end, the effect of monomers on leather plasma deposition time was evaluated and both the resulting plasma polymers and the deposited leather samples were characterised using different experimental techniques, such as: Fourier transform infrared spectroscopy (FTIR), X-ray photoelectron spectroscopy (XPS) and scanning electron microscopy (SEM). In addition, leather samples were tested by standard tests for color change, water resistance, surface wetting resistance and dynamic water contact angle (DWCA).
View Article and Find Full Text PDFThe aim of this work is to develop sustainable reactive polyurethane hot melt adhesives (HMPUR) for footwear applications based on biobased polyols as renewable resources, where ma-croglycol mixtures of polyadipate of 1,4-butanediol, polypropylene and different biobased polyols were employed and further reacted with 4-4'-diphenylmethane diisocyanate. The different reactive polyurethane hot melt adhesives obtained were characterized with different experimental techniques, such as Fourier transform infrared spectroscopy (FTIR), thermogravimetric analysis (TGA), differential scanning calorimetry (DSC), softening temperature and melting viscosity. Finally, their adhesion properties were measured from T-peel tests on leather/HMPUR adhesives/SBR rubber joints in order to establish the viability of the used biobased polyols and the amount of these polyols that could be added to reactive polyurethane hot melt adhesives satisfactorily to meet the quality requirements of footwear joints.
View Article and Find Full Text PDFThe aim of this work is to develop hydrophobic coatings on leather materials by plasma polymerisation with a low-pressure plasma system using an organosilicon compound, such as hexamethyldisiloxane (HMDSO), as chemical precursor. The hydrophobic coatings obtained by this plasma process were evaluated with different experimental techniques such as Fourier transform infrared spectroscopy (FTIR), X-ray photoelectron spectroscopy (XPS), scanning electron microscopy (SEM) and standardised tests including colour measurements of the samples, surface coating thickness and water contact angle (WCA) measurements. The results obtained indicated that the monomer had polymerised correctly and completely on the leather surface creating an ultra-thin layer based on polysiloxane.
View Article and Find Full Text PDF© LitMetric 2025. All rights reserved.