Hydrogenase-1 (Hyd-1) from Escherichia coli is a membrane-bound enzyme that catalyses the reversible oxidation of molecular H2 The active site contains one Fe and one Ni atom and several conserved amino acids including an arginine (Arg(509)), which interacts with two conserved aspartate residues (Asp(118) and Asp(574)) forming an outer shell canopy over the metals. There is also a highly conserved glutamate (Glu(28)) positioned on the opposite side of the active site to the canopy. The mechanism of hydrogen activation has been dissected by site-directed mutagenesis to identify the catalytic base responsible for splitting molecular hydrogen and possible proton transfer pathways to/from the active site.
View Article and Find Full Text PDFThe active site of [NiFe] hydrogenases contains a strictly conserved arginine that suspends a guanidine nitrogen atom <4.5 Å above the nickel and iron atoms. The guanidine headgroup interacts with the side chains of two conserved aspartic acid residues to complete an outer-shell canopy that has thus far proved intractable to investigation by site-directed mutagenesis.
View Article and Find Full Text PDFc-Type cytochromes require specific post-translational protein systems, which vary in different organisms, for the characteristic covalent attachment of heme to the cytochrome polypeptide. Cytochrome c biogenesis System II, found in chloroplasts and many bacteria, comprises four subunits, two of which (ResB and ResC) are the minimal functional unit. The ycf5 gene from Helicobacter pylori encodes a fusion of ResB and ResC.
View Article and Find Full Text PDF