Successful cognitive aging is often thought to result from resistance to the accumulation of pathology, resilience to the effects of pathological accumulation, or some combination of the two. While evidence for resilience has been found in typical aging populations, the oldest-old provide us with a unique window into the role of pathological accumulation in impacting cognition. Here, we aimed to assess group differences in measures of amyloid and tau across older age groups using data from the Alzheimer's Disease Neuroimaging Initiative (ADNI age: 60-89) and + (age: 90-101).
View Article and Find Full Text PDFFront Aging Neurosci
November 2021
While aging is typically associated with cognitive decline, some individuals are able to diverge from the characteristic downward slope and maintain very high levels of cognitive performance. Prior studies have found that cortical thickness in the cingulate cortex, a region involved in information processing, memory, and attention, distinguish those with exceptional cognitive abilities when compared to their cognitively more typical elderly peers. Others major areas outside of the cingulate, such as the prefrontal cortex and insula, are also key in successful aging well into late age, suggesting that structural properties across a wide range of areas may better explain differences in cognitive abilities.
View Article and Find Full Text PDF