Publications by authors named "Elena N Vlasova"

The improvement of the specific pharmacological activity of agents with antimicrobial and antiprotozoal properties (e.g. metronidazole, MET) is of interest for clinical applications in the treatment of bacterial infections.

View Article and Find Full Text PDF

Hybrid nano- and microparticles based on metal ion crosslinked biopolymers are promising carriers for the development of drug delivery systems with improved biopharmaceutical properties. In this work, dexamethasone phosphate-containing particles based on chondroitin sulfate and chitosan or diethylaminoethyl chitosan additionally crosslinked with Zn were prepared. Depending on the polycation/polyanion ratio in the system, anionic and cationic polyelectrolyte complexes (PECs) were obtained.

View Article and Find Full Text PDF

Polyelectrolyte complexes (PECs) based on polysaccharides, including hyaluronic acid (HA) and chitosan (CS), are promising delivery systems for antimicrobial agents, including oral administration of the peptide antibiotic colistin (CT). Modification of CS with different targeting ligands to improve intestinal permeability is a suitable way to improve the oral bioavailability of polyelectrolyte particles. This study describes the procedure for obtaining CT-containing PECs based on HA and CS modified with cyanocobalamin (vitamin B12).

View Article and Find Full Text PDF

The structural features and thermophysical and transport properties of dense nonporous membranes of the casting type from (co)polyamide-imides synthesized by the polycondensation of the diacid chloride of 2-(4-carboxyphenyl)-1,3-dioxoisoindoline-5-carboxylic acid and diamines 5,5'-methylene-bis (2-aminophenol) (DADHyDPhM) and 4,4'-methylenebis(benzeneamine) (DADPhM), taken in molar ratios of 7:3, 1:1, and 3:7, have been studied. The effect of hydroxyl-containing modifying fragments of dihydroxy diphenylmethane introduced in various amounts into the main polymer chain on the pervaporation properties of the formed films is discussed. It has been shown that the presence of the residual solvent N-methyl-2-pyrrolidone in the films not only has a plasticizing effect on the characteristics of film membranes but also promotes the preferential transmembrane transport of polar liquids, primarily methanol (permeation rate over 2 kg for a copolymer with a ratio of DADHyDPhM:DADPhM = 7:3).

View Article and Find Full Text PDF

Polymeric drug delivery systems enhance the biopharmaceutical properties of antibiotics by increasing their bioavailability, providing programmable and controlled-release properties, and reducing toxicity. In addition, drug delivery systems are a promising strategy to improve the intestinal permeability of various antimicrobial agents, including colistin (CT). This study describes the modification of conjugates based on CT and hyaluronic acid (HA) with cyanocobalamin (vitamin B12).

View Article and Find Full Text PDF

In this paper, we report on novel polyimide (PI) nanocomposites filled with binary mixtures of metal oxide (either TiO or ZrO) nanoparticles and nanocarbon (either carbon nanofibers (CNFs) or functionalized carbon nanotubes (CNTs)). The structure and morphology of the materials obtained were comprehensively studied. An exhaustive investigation of their thermal and mechanical properties was performed.

View Article and Find Full Text PDF

In this work, new composite films were prepared by incorporating the disintegrated bacterial cellulose (BCd) nanofibers and cerium oxide nanoparticles into chitosan (CS) matrices. The influence of the amount of nanofillers on the structure and properties of the polymer composites and the specific features of the intermolecular interactions in the materials were determined. An increase in film stiffness was observed as a result of reinforcing the CS matrix with BCd nanofibers: the Young's modulus increased from 4.

View Article and Find Full Text PDF

The structure, thermophysical characteristics, and pervaporation properties of composite membranes based on poly(vinyl alcohol) (PVA) are studied in dependence of the film preparation conditions. It is shown that the nature of the supramolecular organization of the composite polymer film determines which of the components of the separated mixtures of toluene and heptane predominantly penetrate through the corresponding pervaporation membrane. The observed structural effects can become more pronounced if the second component of a polymer mixture is purposefully selected (in this case, poly(N,N-dimethylaminoethyl methacrylate) instead of poly(acrylic acid)) or a nano-sized filler that can be well dispersed in the polymer matrix is introduced.

View Article and Find Full Text PDF

A new biocompatible nanocomposite film material for cell engineering and other biomedical applications has been prepared. It is based on the composition of natural polysaccharides filled with cerium oxide nanoparticles (CeONPs). The preparative procedure consists of successive impregnations of pressed bacterial cellulose (BC) with a sodium alginate (ALG) solution containing nanoparticles of citrate-stabilized cerium oxide and a chitosan (CS) solution.

View Article and Find Full Text PDF

The structure and transport properties of the new Cellokon-AKH membrane based on animal cellulose obtained from tunic of ascidian were studied. The results of scanning electron microscopy (SEM), FTIR spectroscopy, and the X-ray diffraction data revealed significant differences in the structure and morphology of upper and lower surfaces of this layered film membrane based on animal cellulose. It was shown that the membrane surface is a network of intertwined cellulose fibers, with both denser and looser areas present on the lower surface compared to the completely uniform morphology of the main part of the upper surface.

View Article and Find Full Text PDF

A series of polyimide/metal oxide (either ZrO or TiO) nanocomposite films were fabricated based on two polymer matrices. The prepared films were characterized by scanning electron microscopy (SEM), atomic force microscopy (AFM), and X-ray diffraction analysis (XRD), and their thermal and mechanical properties were investigated with the use of thermogravimetric (TGA), differential thermal analysis (DTA), and thermomechanical analysis (TMA). We have found out that functional properties of the obtained materials are determined by a number of factors, not only the type, size, surface functionality, and concentration of the nanofiller, but also the chemical structure of the matrix polyimide.

View Article and Find Full Text PDF

Polymer film membranes are used to solve specific separation problems that dictate structural requirements. Structural and morphological parameters of film membranes based on glassy polyheteroarylenes can be controlled in the process of preparation from solutions that opens up prospects for obtaining structured membranes required for targeted separation. In the case of aromatic poly(amide-imide)s, the possibility of controlling film formation and structure virtually has not been studied.

View Article and Find Full Text PDF

Cryogelation is a developing technique for the production of polysaccharide materials for biomedical applications. The formation of a macroporous structure during the freeze-drying of polysaccharide solutions creates biomaterials suitable for tissue engineering. Due to its availability, biocompatibility, biodegradability, and non-toxicity, chitin is a promising natural polysaccharide for the production of porous materials for tissue engineering; however, its use is limited due to the difficulty of dissolving it.

View Article and Find Full Text PDF

We study colloids of nanobiocomposites (NBC) containing Au nanoparticles (NP) obtained by reduction of gold precursor with functional groups of κCAR. The AuNPs content was changed from 2.0 to 5.

View Article and Find Full Text PDF

Self-supporting multilayer films containing a polyelectrolyte complex (PEC) were prepared by the sequential layering of sodium hyaluronate (HA, MW 5.4 × 10) and chitosan (CS, MW 1.6 × 10, the degree of deacetylation 0.

View Article and Find Full Text PDF

κ-carrageenan is a linear sulfated anionic gelling polysaccharide obtained from red seaweed algae by an alkaline hydrolysis. We applied static and dynamic light scattering (DLS), capillary viscometry, FT-IR, and electrophoretic DLS to gain insight into the effect of deep alkaline hydrolysis (95 °C, pH = 10 during T = 60, 75, and 90 min) on κ-carrageenan macromolecules in a coil conformation. As DLS of coil-like κ-carrageenans is usually complicated by spurious permanent aggregates, the alkaline hydrolysis of κ-carrageenans has not been studied by DLS.

View Article and Find Full Text PDF

Succinyl-chitin (SCH) nanoparticles were obtained by acylation of partially deacetylated chitin (DCH) nanofibers. Introduction of the succinyl moiety induced a partial amorphization of DCH, as viewed by X-ray diffraction, and increased the fractal dimension of the colloids from d = 1.2 (DCH) to 1.

View Article and Find Full Text PDF

Spherical nanoparticles of ZrO with 2 and 10 mol% EuO up to 20 nm size were prepared by the method of hydrothermal synthesis for luminescent functionalization of the polymer-inorganic nanocomposites based on poly(methyl methacrylate). Surface modification of oxide nanoparticles was carried out by 3-(trimethoxysilyl)propyl methacrylate, dimethoxymethylvinyl silane and 2-hydroxyethyl methacrylate to provide uniform distribution and to prevent agglomeration of nanosized filler in the polymer matrix. Polymer-inorganic composites were synthesized by in situ free radical polymerization in bulk.

View Article and Find Full Text PDF

A series of water-soluble sulfoethylated chitosans (SEC) with degrees of substitution (DS) up to 130% were obtained using a heterogeneous reaction of chitosan with sodium 2-chloroethanesulfonate in 85% isopropanol in the presence of NaOH. NMR and FTIR spectroscopy confirmed that sulfoethylation of chitosan preferentially happens at hydroxyl groups and to some extent at amino groups, giving mixed substituted O,N-SEC. Chitosan shows positive birefringence, whereas SEC shows negative values, indicating self-organization in dilute solution.

View Article and Find Full Text PDF