Complex socio-economic, political and demographic factors have driven the increased conversion of Europe's semi-natural grasslands to intensive pastures. This trend is particularly strong in some of the most biodiverse regions of the continent, such as Central and Eastern Europe. Intensive grazing is known to decrease species diversity and alter the composition of plant and insect communities.
View Article and Find Full Text PDFPollen identification and quantification are crucial but challenging tasks in addressing a variety of evolutionary and ecological questions (pollination, paleobotany), but also for other fields of research (e.g. allergology, honey analysis or forensics).
View Article and Find Full Text PDFStudies of parallel or convergent evolution (the repeated, independent evolution of similar traits in similar habitats) rarely explicitly quantify the extent of parallelism (i.e. variation in the direction and/or magnitude of divergence) between the sexes; instead, they often investigate both sexes together or exclude one sex.
View Article and Find Full Text PDFThe use of environmental DNA (eDNA) to determine the presence and distribution of aquatic organisms has become an important tool to monitor and investigate freshwater communities. The successful application of this method in the field, however, is dependent on the effectiveness of positive DNA verification, which is influenced by site-specific environmental parameters. Factors affecting eDNA concentrations in aquatic ecosystems include flow conditions, and the presence of substances that possess DNA-binding properties or inhibitory effects.
View Article and Find Full Text PDF