Publications by authors named "Elena Marchesi"

Objective: The STEPPER (Status Epilepticus in Emilia-Romagna) study aimed to investigate the clinical characteristics, prognostic factors, and treatment approaches of status epilepticus (SE) in adults of the Emilia-Romagna region (ERR), Northern Italy.

Methods: STEPPER, an observational, prospective, multicentric cohort study, was conducted across neurology units, emergency departments, and intensive care units of the ERR over 24 months (October 2019-October 2021), encompassing incident cases of SE. Patients were followed up for 30 days.

View Article and Find Full Text PDF

The advantages of a treatment modality that combines two or more therapeutic agents with different mechanisms of action encourage the study of hybrid functional compounds for pharmacological applications. Molecular hybridization, resulting from a covalent combination of two or more pharmacophore units, has emerged as a promising approach to overcome several issues and has also been explored for the design of new drugs for COVID-19 treatment. In this review, we presented an overview of small-molecule hybrids from both natural products and synthetic sources reported in the literature to date with potential antiviral -SARS-CoV-2 activity.

View Article and Find Full Text PDF

Delivery represents a major hurdle to the clinical advancement of oligonucleotide therapeutics for the treatment of disorders such as Duchenne muscular dystrophy (DMD). In this preliminary study, we explored the ability of 2'--methyl-phosphorothioate antisense oligonucleotides (ASOs) conjugated with lipophilic ursodeoxycholic acid (UDCA) to permeate across intestinal barriers in vitro by a co-culture system of non-contacting IEC-6 cells and DMD myotubes, either alone or encapsulated in exosomes. UDCA was used to enhance the lipophilicity and membrane permeability of ASOs, potentially improving oral bioavailability.

View Article and Find Full Text PDF

Herein, we report the synthesis of a new hybrid compound based on a 2'-deoxyuridine nucleoside conjugated with a NO photo-donor moiety (dU-t-NO) via CuAAC click chemistry. Hybrid dU-t-NO, as well as two previously reported 2'-deoxyadenosine based hybrids (dAdo-S-NO and dAdo-t-NO), were evaluated for their cytotoxic and cytostatic activities in selected cancer cell lines. dAdo-S-NO and dAdo-t-NO hybrids displayed higher activity with respect to dU-t-NO.

View Article and Find Full Text PDF

Ursodeoxycholic acid (UDCA) and acetoacetate are natural compounds present in the human intestine and blood, respectively. A number of studies highlighted that besides their well-known primary biological roles, both compounds possess the ability to influence a variety of cellular processes involved in the etiology of various diseases. These reasons suggested the potential of acetoacetate-UDCA hybrids as possible therapeutic agents and prompted us to develop a synthetic strategy to selectively derivatize the hydroxyl groups of the bile acid with acetoacetyl moieties.

View Article and Find Full Text PDF

Here, we propose the molecular hybridization of dihydroartemisinin (DHA) and ursodeoxycholic bile acid (UDCA), approved drugs, for the preparation of antiviral agents against SARS-CoV-2. DHA and UDCA were selected on the basis of their recently demonstrated activity against SARS-CoV-2. A selection of DHA-UDCA-based hybrids obtained by varying the nature of the linkage and the bile acid conjugation point as well as unconjugated DHA and UDCA were tested for cytotoxicity and anti-SARS-CoV-2 activity on Vero E6 and Calu-3 human lung cells.

View Article and Find Full Text PDF

Artemisinin is a natural compound extracted from Artemisia species belonging to the Asteraceae family. Currently, artemisinin and its derivatives are considered among the most significant small-molecule antimalarial drugs. Artemisinin and its derivatives have also been shown to possess selective anticancer properties, however, there are several limitations and gaps in knowledge that retard their repurposing as effective anticancer agents.

View Article and Find Full Text PDF

Hepatocellular carcinoma is the third most common cause of cancer-related death according to the International Agency for Research on Cancer. Dihydroartemisinin (DHA), an antimalarial drug, has been reported to exhibit anticancer activity but with a short half-life. We synthesized a series of bile acid-dihydroartemisinin hybrids to improve its stability and anticancer activity and demonstrated that an ursodeoxycholic-DHA (UDC-DHA) hybrid was 10-fold more potent than DHA against HepG2 hepatocellular carcinoma cells.

View Article and Find Full Text PDF

Introduction: Pediatric-onset multiple sclerosis (POMS) is characterized by high inflammatory disease activity. Our aim was to describe the treatment sequencing and report the impact highly effective disease-modifying treatment (HET) had on disease activity.

Materials And Methods: Five consecutive patients with POMS were administered HET following lower efficacy drug or as initial therapy.

View Article and Find Full Text PDF

Objectives: To assess whether COVID-19 could be a concurrent factor in the genesis and/or worsening of stroke and to provide data on COVID-19 -associated stroke patients during the first pandemic wave and comparative data on COVID-19 negative stroke patients in the same period.

Materials And Methods: This is a retrospective, observational, case-control, single centre study, carried out in a General Hospital in northern Italy. Sixty-three consecutive stroke patients were included, COVID-19-associated stroke was classified as cases and non COVID-19-associated stroke as controls.

View Article and Find Full Text PDF

The COVID-19 pandemic poses an ongoing global challenge, and several risk factors make people with multiple sclerosis (pwMS) particularly susceptible to running a severe disease course. Although the literature does report numerous articles on the risk factors for severe COVID-19 and vaccination response in pwMS, there is a scarcity of reviews integrating both these aspects into strategies aimed at minimizing risks. The aim of this review is to describe the risk of vulnerable pwMS exposed to severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), the issues related to the SARS-CoV-2 vaccine and to evidence possible future strategies in the clinical management of pwMS.

View Article and Find Full Text PDF

Our groups previously reported that conjugation at 3'-end with ursodeoxycholic acid (UDCA) significantly enhanced in vitro exon skipping properties of ASO 51 oligonucleotide targeting the human DMD exon 51. In this study, we designed a series of lipophilic conjugates of ASO 51, to explore the influence of the lipophilic moiety on exon skipping efficiency. To this end, three bile acids and two fatty acids have been derivatized and/or modified and conjugated to ASO 51 by automatized solid phase synthesis.

View Article and Find Full Text PDF

Chenodeoxycholic acid and ursodeoxycholic acid (CDCA and UDCA, respectively) have been conjugated with paclitaxel (PTX) anticancer drugs through a high-yield condensation reaction. Bile acid-PTX hybrids (BA-PTX) have been investigated for their pro-apoptotic activity towards a selection of cancer cell lines as well as healthy fibroblast cells. Chenodeoxycholic-PTX hybrid (CDC-PTX) displayed cytotoxicity and cytoselectivity similar to PTX, whereas ursodeoxycholic-PTX hybrid (UDC-PTX) displayed some anticancer activity only towards HCT116 colon carcinoma cells.

View Article and Find Full Text PDF

Steric blocking antisense oligonucleotides (ASO) are promising tools for splice modulation such as exon-skipping, although their therapeutic effect may be compromised by insufficient delivery. To address this issue, we investigated the synthesis of a 20-mer 2'-OMe PS oligonucleotide conjugated at 3'-end with ursodeoxycholic acid (UDCA) involved in the targeting of human exon 51, by exploiting both a pre-synthetic and a solution phase approach. The two approaches have been compared.

View Article and Find Full Text PDF

A 9-year-old neutered male Dachshund dog was assessed for stranguria. An enlarged prostate was identified on physical examination, and a diagnosis of prostatic carcinoma confirmed by cytology. Due to a neoplastic lower urinary tract obstruction, palliative surgical urinary diversion treatment was performed with laparoscopic assisted cutaneous ureterostomy (LACU).

View Article and Find Full Text PDF

The click azide = alkyne 1,3-dipolar cycloaddition (click chemistry) has become the approach of choice for bioconjugations in medicinal chemistry, providing facile reaction conditions amenable to both small and biological molecules. Many nucleoside analogs are known for their marked impact in cancer therapy and for the treatment of virus diseases and new targeted oligonucleotides have been developed for different purposes. The click chemistry allowing the tolerated union between units with a wide diversity of functional groups represents a robust means of designing new hybrid compounds with an extraordinary diversity of applications.

View Article and Find Full Text PDF

The advantages of a treatment modality that combines two or more therapeutic agents in cancer therapy encourages the study of hybrid functional compounds for pharmacological applications. In light of this, we reviewed recent works on hybrid molecules based on bile acids. Due to their biological properties, as well as their different chemical/biochemical reactive moieties, bile acids can be considered very interesting starting molecules for conjugation with natural or synthetic bioactive molecules.

View Article and Find Full Text PDF

Hepatocellular carcinoma (HCC) is the most common primary liver malignancy in adults and accounts for 85-90% of all primary liver cancer. Based on the estimation by the International Agency for Research on Cancer in 2018, liver cancer is the fourth leading cause of cancer death globally. Dihydroartemisinin (DHA), the main active metabolite of artemisinin derivatives, is a well-known drug for the treatment of malaria.

View Article and Find Full Text PDF

Background And Purpose: an estimated 40-80% of acute ischemic stroke patients have dysphagia and about 14% develop stroke-associated pneumonia. However, it may be difficult to detect swallowing problems at admission. Moreover, there might not be an on-duty specialist skilled in the diagnosis of this condition.

View Article and Find Full Text PDF

Oligonucleotides (ONs) are gaining increasing importance as a promising novel class of biopharmaceuticals. Thanks to their fundamental role in gene regulation, they can be used to develop custom-made drugs (also called N-to-1) able to act on the gene expression at pre-translational level. With recent approvals of ON-based therapeutics by the Food and Drug Administration (FDA), a growing demand for high-quality chemically modified ONs is emerging and their market is expected to impressively prosper in the near future.

View Article and Find Full Text PDF

A series of hybrid compounds based on natural products-bile acids and dihydroartemisinin-were prepared by different synthetic methodologies and investigated for their in vitro biological activity against HL-60 leukemia and HepG2 hepatocellular carcinoma cell lines. Most of these hybrids presented significantly improved antiproliferative activities with respect to dihydroartemisinin and the parent bile acid. The two most potent hybrids of the series exhibited a 10.

View Article and Find Full Text PDF

Localized drug delivery represents one of the most challenging uses of systems based on conductive polymer films. Typically, anionic drugs are incorporated within conductive polymers through electrostatic interaction with the positively charged polymer. Following this approach, the synthetic glucocorticoid dexamethasone phosphate is often delivered from neural probes to reduce the inflammation of the surrounding tissue.

View Article and Find Full Text PDF

A series of glycomimetics of UDP-GlcNAc, in which the β-phosphate has been replaced by either an alkyl chain or a triazolyl ring and the sugar moiety has been replaced by a pyrrolidine ring, has been synthesized by the application of different click-chemistry procedures. Their affinities for human O-GlcNAc transferase (hOGT) have been evaluated and studied both spectroscopically and computationally. The binding epitopes of the best ligands have been determined in solution by means of saturation transfer difference (STD) NMR spectroscopy.

View Article and Find Full Text PDF