Metastatic melanoma patients benefit from the approved targeted BRAF inhibitor (BRAFi) therapy. Despite the great progress in the therapeutic approach to combat metastatic melanoma, fast emerging drug resistance in patients limits its long-term efficacy. In this study, we aimed to unravel the role of the p53 target gene CDKN1A/p21 in the response of melanoma cells towards BRAFi.
View Article and Find Full Text PDFRad51 is an essential factor of the homologous recombination DNA repair pathway and therefore plays an important role in maintaining genomic stability. We show that RAD51 and other homologous recombination repair genes are overexpressed in metastatic melanoma cell lines and in melanoma patient samples, which correlates with reduced survival of melanoma patients. In addition, Rad51 expression in melanoma cells was regulated on a transcriptional level by the MAPK signaling pathway with Elk1 as the main downstream transcriptional effector.
View Article and Find Full Text PDFThe efficacy of targeted MAPK signalling pathway inhibitors (MAPKi) in metastatic melanoma therapy is limited by the development of resistance mechanisms that results in disease relapse. This situation still requires treatment alternatives for melanoma patients with acquired resistance to targeted therapy. We found that melanoma cells, which developed resistance towards MAPKi show an enhanced susceptibility to platinum-based drugs, such as cisplatin and carboplatin.
View Article and Find Full Text PDFThe clinical availability of small molecule inhibitors specifically targeting mutated BRAF marked a significant breakthrough in melanoma therapy. Despite a dramatic anti-tumour activity and improved patient survival, rapidly emerging resistance, however, greatly limits the clinical benefit. The majority of the already described resistance mechanisms involve a reactivation of the MAPK signalling pathway.
View Article and Find Full Text PDF