Publications by authors named "Elena MacFarlane"

Loeys-Dietz syndrome (LDS) is an aneurysm disorder caused by mutations that decrease transforming growth factor-β (TGF-β) signaling. Although aneurysms develop throughout the arterial tree, the aortic root is a site of heightened risk. To identify molecular determinants of this vulnerability, we investigated the heterogeneity of vascular smooth muscle cells (VSMCs) in the aorta of LDS mice by single cell and spatial transcriptomics.

View Article and Find Full Text PDF
Article Synopsis
  • - Patients with Loeys-Dietz syndrome are at a higher risk for aortic issues, so the study looks into the outcomes of a preventive aortic arch replacement during a specific heart surgery procedure.
  • - Eight patients with confirmed Loeys-Dietz syndrome underwent this preventive surgery, and their outcomes were compared to those of patients with Marfan syndrome and healthy individuals using advanced imaging techniques.
  • - The results showed no serious complications or aortic events in the patients after surgery, while analyses of their tissue revealed abnormal changes in smooth muscle cells, indicating potential underlying issues related to their condition.
View Article and Find Full Text PDF

Heterozygous, loss of function mutations in positive regulators of the Transforming Growth Factor-β (TGF-β) pathway cause hereditary forms of thoracic aortic aneurysm. It is unclear whether and how the initial signaling deficiency triggers secondary signaling upregulation in the remaining functional branches of the pathway, and if this contributes to maladaptive vascular remodeling. To examine this process in a mouse model in which time-controlled, partial interference with postnatal TGF-β signaling in vascular smooth muscle cells (VSMCs) could be assessed, we used a VSMC-specific tamoxifen-inducible system, and a conditional allele, to inactivate at 6 weeks of age, after completion of perinatal aortic development.

View Article and Find Full Text PDF

Thoracic aortic aneurysms (TAA) are permanent and localized dilations of the aorta that predispose patients to a life-threatening risk of aortic dissection or rupture. The identification of pathogenic variants that cause hereditary forms of TAA has delineated fundamental molecular processes required to maintain aortic homeostasis. Vascular smooth muscle cells (VSMCs) elaborate and remodel the extracellular matrix (ECM) in response to mechanical and biochemical cues from their environment.

View Article and Find Full Text PDF

Fibrosis is a common pathologic outcome of chronic disease resulting in the replacement of normal tissue parenchyma with a collagen-rich extracellular matrix produced by myofibroblasts. Although the progenitor cell types and cellular programs giving rise to myofibroblasts through mesenchymal transition can vary between tissues and diseases, their contribution to fibrosis initiation, maintenance, and progression is thought to be pervasive. Here, we showed that the ability of transforming growth factor-β (TGFβ) to efficiently induce myofibroblast differentiation of cultured epithelial cells, endothelial cells, or quiescent fibroblasts is dependent on the induced expression and activity of dimeric calpains, a family of non-lysosomal cysteine proteases that regulate a variety of cellular events through posttranslational modification of diverse substrates.

View Article and Find Full Text PDF

In systemic sclerosis (SSc), previously healthy adults develop an inflammatory prodrome with subsequent progressive fibrosis of the skin and viscera. SSc has a weak signature for genetic contribution, and there are few pathogenic insights or targeted treatments for this condition. Here, chromatin accessibility and transcriptome profiling coupled with targeted epigenetic editing revealed constitutive activation of a previously unannotated transforming growth factor-β2 () enhancer maintained through epigenetic memory in SSc.

View Article and Find Full Text PDF

Women with Marfan syndrome (MFS) are at high risk for pregnancy-associated aortic dissection. Pathogenic models that singularly invoke hemodynamic stress are difficult to reconcile with predominant postnatal occurrence of aortic tear, often occurring weeks to months after delivery. In consideration of events that peak at term, are sustained after delivery, and might synergize with previously defined signaling pathways implicated in aneurysm progression, we examined the hormone oxytocin, which initiates uterine contraction and milk letdown for the duration of lactation through phosphorylation of extracellular signal-regulated kinase (ERK).

View Article and Find Full Text PDF

The aortic root is the predominant site for development of aneurysm caused by heterozygous loss-of-function mutations in positive effectors of the transforming growth factor-β (TGF-β) pathway. Using a mouse model of Loeys-Dietz syndrome (LDS) that carries a heterozygous kinase-inactivating mutation in TGF-β receptor I, we found that the effects of this mutation depend on the lineage of origin of vascular smooth muscle cells (VSMCs). Secondary heart field-derived (SHF-derived), but not neighboring cardiac neural crest-derived (CNC-derived), VSMCs showed impaired Smad2/3 activation in response to TGF-β, increased expression of angiotensin II (AngII) type 1 receptor (Agtr1a), enhanced responsiveness to AngII, and higher expression of TGF-β ligands.

View Article and Find Full Text PDF

The objective of the present study was to 1) analyze the ascending aortic proteome within a mouse model of Marfan syndrome (MFS; Fbn1) at early and late stages of aneurysm and 2) subsequently test a novel hypothesis formulated on the basis of this unbiased proteomic screen that links changes in integrin composition to transforming growth factor (TGF)-β-dependent activation of the rapamycin-independent component of mammalian target of rapamycin (Rictor) signaling pathway. Ingenuity Pathway Analysis of over 1,000 proteins quantified from the in vivo MFS mouse aorta by data-independent acquisition mass spectrometry revealed a predicted upstream regulator, Rictor, that was selectively activated in aged MFS mice. We validated this pattern of Rictor activation in vivo by Western blot analysis for phosphorylation on Thr in a separate cohort of mice and showed in vitro that TGF-β activates Rictor in an integrin-linked kinase-dependent manner in cultured aortic vascular smooth muscle cells.

View Article and Find Full Text PDF

Aim: Thoracic aortic aneurysms are a life-threatening condition often diagnosed too late. To discover novel robust biomarkers, we aimed to better understand the molecular mechanisms underlying aneurysm formation.

Methods And Results: In Fibulin-4R/R mice, the extracellular matrix protein Fibulin-4 is 4-fold reduced, resulting in progressive ascending aneurysm formation and early death around 3 months of age.

View Article and Find Full Text PDF

Among children with the most severe presentation of Marfan syndrome (MFS), an inherited disorder of connective tissue caused by a deficiency of extracellular fibrillin-1, heart failure is the leading cause of death. Here, we show that, while MFS mice (Fbn1C1039G/+ mice) typically have normal cardiac function, pressure overload (PO) induces an acute and severe dilated cardiomyopathy in association with fibrosis and myocyte enlargement. Failing MFS hearts show high expression of TGF-β ligands, with increased TGF-β signaling in both nonmyocytes and myocytes; pathologic ERK activation is restricted to the nonmyocyte compartment.

View Article and Find Full Text PDF

Biallelic mutations in cause pseudoxanthoma elasticum (PXE), a disease characterized by calcification in the skin, eyes, and blood vessels. The function of ATP-binding cassette C6 (ABCC6) and the pathogenesis of PXE remain unclear. We used mouse models and patient fibroblasts to demonstrate genetic interaction and shared biochemical and cellular mechanisms underlying ectopic calcification in PXE and related disorders caused by defined perturbations in extracellular adenosine 5'-triphosphate catabolism.

View Article and Find Full Text PDF

The transforming growth factor β (TGF-β) family of signaling molecules, which includes TGF-βs, activins, inhibins, and numerous bone morphogenetic proteins (BMPs) and growth and differentiation factors (GDFs), has important functions in all cells and tissues, including soft connective tissues and the skeleton. Specific TGF-β family members play different roles in these tissues, and their activities are often balanced with those of other TGF-β family members and by interactions with other signaling pathways. Perturbations in TGF-β family pathways are associated with numerous human diseases with prominent involvement of the skeletal and cardiovascular systems.

View Article and Find Full Text PDF