Background: Pervasive usage of alternative promoters leads to the deregulation of gene expression in carcinogenesis and may drive the emergence of new genes in spermatogenesis. However, little is known regarding the mechanisms underpinning the activation of alternative promoters.
Results: Here we describe how alternative cancer-testis-specific transcription is activated.
Introduction: -related disorder (CRD) is a neurodevelopmental disorder (NDD) caused by monoallelic pathogenic variants in . The first variants in CRD cases were documented in 2013. To date, 76 variants have been further described in the literature.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
October 2022
Many tumors express meiotic genes that could potentially drive somatic chromosome instability. While germline cohesin subunits SMC1B, STAG3, and REC8 are widely expressed in many cancers, messenger RNA and protein for RAD21L subunit are expressed at very low levels. To elucidate the potential of meiotic cohesins to contribute to genome instability, their expression was investigated in human cell lines, predominately in DLD-1.
View Article and Find Full Text PDFCTCF is a key organizer of the 3D genome. Its specialized paralog, BORIS, heterodimerizes with CTCF but is expressed only in male germ cells and in cancer states. Unexpectedly, BORIS-null mice have only minimal germ cell defects.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
January 2020
The DNA-binding protein CCCTC-binding factor (CTCF) and the cohesin complex function together to shape chromatin architecture in mammalian cells, but the molecular details of this process remain unclear. Here, we demonstrate that a 79-aa region within the CTCF N terminus is essential for cohesin positioning at CTCF binding sites and chromatin loop formation. However, the N terminus of CTCF fused to artificial zinc fingers was not sufficient to redirect cohesin to non-CTCF binding sites, indicating a lack of an autonomously functioning domain in CTCF responsible for cohesin positioning.
View Article and Find Full Text PDFHigh-grade serous carcinoma (HGSC) is the most aggressive and predominant form of epithelial ovarian cancer and the leading cause of gynecologic cancer-related death. We have previously shown that (also known as , rother f the egulator of mprinted ites) is expressed in most ovarian cancers, and is associated with global and promoter-specific DNA hypomethylation, advanced tumor stage, and poor prognosis. To explore its role in HGSC, we expressed in human fallopian tube secretory epithelial cells (FTSEC), the presumptive cells of origin for HGSC.
View Article and Find Full Text PDFThe gene, is a testis-specific paralog frequently erroneously activated in cancer, although its exact role in cancer remains unclear. BORIS is both a transcription factor and an architectural chromatin protein. BORIS' normal role is to establish a germline-like gene expression and remodel the epigenetic landscape in testis; it similarly remodels chromatin when activated in human cancer.
View Article and Find Full Text PDFBackground: A common aberration in cancer is the activation of germline-specific proteins. The DNA-binding proteins among them could generate novel chromatin states, not found in normal cells. The germline-specific transcription factor BORIS/CTCFL, a paralog of chromatin architecture protein CTCF, is often erroneously activated in cancers and rewires the epigenome for the germline-like transcription program.
View Article and Find Full Text PDFBackground: CTCF and BORIS (CTCFL), two paralogous mammalian proteins sharing nearly identical DNA binding domains, are thought to function in a mutually exclusive manner in DNA binding and transcriptional regulation.
Results: Here we show that these two proteins co-occupy a specific subset of regulatory elements consisting of clustered CTCF binding motifs (termed 2xCTSes). BORIS occupancy at 2xCTSes is largely invariant in BORIS-positive cancer cells, with the genomic pattern recapitulating the germline-specific BORIS binding to chromatin.
Cancer-testis antigens (CTAs) are normally expressed in testis but are aberrantly expressed in a variety of cancers with varying frequency. More than 100 proteins have been identified as CTA including testes-specific protease 50 (TSP50) and the testis-specific paralogue of CCCTC-binding factor, BORIS (brother of the regulator of imprinted sites). Because many CTAs are considered as excellent targets for tumor immunotherapy, understanding the regulatory mechanisms governing their expression is important.
View Article and Find Full Text PDFBackground: BORIS/CTCFL is a paralogue of CTCF, the major epigenetic regulator of vertebrate genomes. BORIS is normally expressed only in germ cells but is aberrantly activated in numerous cancers. While recent studies demonstrated that BORIS is a transcriptional activator of testis-specific genes, little is generally known about its biological and molecular functions.
View Article and Find Full Text PDFBORIS, like other members of the 'cancer/testis antigen' family, is normally expressed in testicular germ cells and repressed in somatic cells, but is aberrantly activated in cancers. To understand regulatory mechanisms governing human BORIS expression, we characterized its 5'-flanking region. Using 5' RACE, we identified three promoters, designated A, B and C, corresponding to transcription start sites at -1447, -899 and -658 bp upstream of the first ATG.
View Article and Find Full Text PDFPaternal deletion of the imprinting control region (ICR) KvDMR1 results in loss of expression of the Kcnq1ot1 noncoding RNA and derepression of flanking paternally silenced genes. Truncation of Kcnq1ot1 also results in the loss of imprinted expression of these genes in most cases, demonstrating a role for the RNA or its transcription in gene silencing. However, enhancer-blocking studies indicate that KvDMR1 also contains chromatin insulator or silencer activity.
View Article and Find Full Text PDFCTCF is a nuclear phosphoprotein capable of using different subsets of its 11 Zn fingers (ZF) for sequence-specific binding to many dissimilar DNA CTCF-target sites. Such sites were identified in the genomic DNA of various multicellular organisms, in which the CTCF gene was cloned, including insects, birds, rodents, and primates. CTCF/DNA-complexes formed in vivo with different 50-bp-long sequences mediate diverse functions such as positive and negative regulation of promoters, and organization of all known enhancer-blocking elements ("chromatin insulators") including constitutive and epigenetically regulated elements.
View Article and Find Full Text PDFThe choice mechanisms that determine the future inactive X chromosome in somatic cells of female mammals involve the regulated expression of the XIST gene. A familial C(-43)G mutation in the XIST promoter results in skewing of X chromosome inactivation (XCI) towards the inactive X chromosome of heterozygous females, whereas a C(-43)A mutation found primarily in the active X chromosome results in the opposite skewing pattern. Both mutations point to the existence of a factor that might be responsible for the skewed patterns.
View Article and Find Full Text PDFCTCF is a widely expressed 11-zinc finger (ZF) transcription factor that is involved in different aspects of gene regulation including promoter activation or repression, hormone-responsive gene silencing, methylation-dependent chromatin insulation, and genomic imprinting. Because CTCF targets include oncogenes and tumor suppressor genes, we screened over 100 human tumor samples for mutations that might disrupt CTCF activity. We did not observe any CTCF mutations leading to truncations/premature stops.
View Article and Find Full Text PDF