The advance of nanomaterials has opened new opportunities to develop ever more sensitive sensors owing to their high surface-to-volume ratio. However, it is challenging to achieve intrinsic sensitivities of nanomaterials for ultra-low level detections due to their vulnerability against contaminations. Here we show that despite considerable achievements in the last decade, continuous in situ cleaning of carbon nanotubes with ultraviolet light during gas sensing can still dramatically enhance their performance.
View Article and Find Full Text PDFFormation of ripples on a supported graphene sheet involves interfacial interaction with the substrate. In this work, graphene was grown on a copper foil by chemical vapor deposition from methane. On thermal quenching from elevated temperatures, we observed the formation of ripples in grown graphene, developing a peculiar topographic pattern in the form of wavy grooves and single/double rolls, roughly honeycomb cells, or their combinations.
View Article and Find Full Text PDFSingle-walled carbon nanotubes can be classified as either metallic or semiconducting, depending on their conductivity, which is determined by their chirality. Existing synthesis methods cannot controllably grow nanotubes with a specific type of conductivity. By varying the noble gas ambient during thermal annealing of the catalyst, and in combination with oxidative and reductive species, we altered the fraction of tubes with metallic conductivity from one-third of the population to a maximum of 91%.
View Article and Find Full Text PDF