We constrain the parameters of neutron superfluidity in the cores of neutron stars making use of the recently proposed effect of resonance stabilization of r modes. To this end, we, for the first time, calculate the finite-temperature r-mode spectra for realistic models of rotating superfluid neutron stars, accounting for both muons and neutron-proton entrainment in their interiors. We find that the ordinary (normal) r mode exhibits avoided crossings with superfluid r modes at certain stellar temperatures and spin frequencies.
View Article and Find Full Text PDFWe consider an instability of rapidly rotating neutron stars in low-mass x-ray binaries (LMXBs) with respect to excitation of r modes (which are analogous to Earth's Rossby waves controlled by the Coriolis force). We argue that finite temperature effects in the superfluid core of a neutron star lead to a resonance coupling and enhanced damping (and hence stability) of oscillation modes at certain stellar temperatures. Using a simple phenomenological model we demonstrate that neutron stars with high spin frequency may spend a substantial amount of time at these "resonance" temperatures.
View Article and Find Full Text PDF