Loeys-Dietz syndrome (LDS) is a connective tissue disorder that is characterized by a high risk for aneurysm and dissection throughout the arterial tree and phenotypically resembles Marfan syndrome. LDS is caused by heterozygous missense mutations in either TGF-β receptor gene (TGFBR1 or TGFBR2), which are predicted to result in diminished TGF-β signaling; however, aortic surgical samples from patients show evidence of paradoxically increased TGF-β signaling. We generated 2 knockin mouse strains with LDS mutations in either Tgfbr1 or Tgfbr2 and a transgenic mouse overexpressing mutant Tgfbr2.
View Article and Find Full Text PDFIn systemic sclerosis (SSc), a common and aetiologically mysterious form of scleroderma (defined as pathological fibrosis of the skin), previously healthy adults acquire fibrosis of the skin and viscera in association with autoantibodies. Familial recurrence is extremely rare and causal genes have not been identified. Although the onset of fibrosis in SSc typically correlates with the production of autoantibodies, whether they contribute to disease pathogenesis or simply serve as a marker of disease remains controversial and the mechanism for their induction is largely unknown.
View Article and Find Full Text PDFThe influence of signals transmitted by the phosphatase calcineurin and the transcription factor NFAT on the development and function of natural killer T (NKT) cells is unclear. In this report, we demonstrate that the transcription factor early growth response 2 (Egr2), a target gene of NFAT, was specifically required for the ontogeny of NKT cells but not that of conventional CD4(+) or CD8(+) T cells. NKT cells developed normally in the absence of Egr1 or Egr3, which suggests that Egr2 is a specific regulator of NKT cell differentiation.
View Article and Find Full Text PDFThe calcineurin/NFAT (nuclear factor of activated T-cells) signalling pathway is essential for many aspects of vertebrate development and is the target of the widely used immunosuppressive drugs FK506 and cyclosporine A. The basis for the therapeutic specificity of these drugs has remained unclear, as calcineurin is expressed ubiquitously. By inactivating calcineurin during haematopoietic development, we found that although this signalling pathway has an important, non-redundant role in the regulation of lymphocyte developmental checkpoints, it is not essential for the development of blood myeloid lineages.
View Article and Find Full Text PDFAt critical times in development, cells are able to convert graded signals into discrete developmental outcomes; however, the mechanisms involved are poorly understood. During thymocyte development, cell fate is determined by signals originating from the alphabeta T-cell receptor. Low-affinity/avidity interactions between the T-cell receptor and peptide-MHC complexes direct differentiation to the single-positive stage (positive selection), whereas high-affinity/avidity interactions induce death by apoptosis (negative selection).
View Article and Find Full Text PDFDevelopment and repair of the vertebrate skeleton requires the precise coordination of bone-forming osteoblasts and bone-resorbing osteoclasts. In diseases such as osteoporosis, bone resorption dominates over bone formation, suggesting a failure to harmonize osteoclast and osteoblast function. Here, we show that mice expressing a constitutively nuclear NFATc1 variant (NFATc1(nuc)) in osteoblasts develop high bone mass.
View Article and Find Full Text PDFA series of signal-directed transitions regulates the development of distinct populations of self-tolerant B cells and ultimately the production of antibody-producing plasma cells. We studied the role of calcineurin/NFAT signaling in B cells by deleting the regulatory b1 subunit of calcineurin specifically in B cells. Follicular (FO) and marginal zone (MZ) B cells develop normally in these mice, but B1 cell numbers are reduced.
View Article and Find Full Text PDFThe processes of positive and negative selection in the thymus both determine the population of T cells that will enter the peripheral immune system and eliminate self-reactive T cells by apoptosis. Substantial evidence indicates that TCR signal intensity mediates this cell fate choice: low-intensity signals lead to survival and differentiation, whereas high-intensity signals generated by self-Ag lead to cell death. The molecular mechanism by which these graded signals are converted to discrete outcomes is not understood.
View Article and Find Full Text PDFCa(2+) signals control a variety of lymphocyte responses, ranging from short-term cytoskeletal modifications to long-term changes in gene expression. The identification of molecules and channels that modulate Ca(2+) entry into T and B lymphocytes has both provided details of the molecular events leading to immune responses and raised controversy. Here we review studies of the pathways that allow Ca(2+) entry, the function of Ca(2+) in the regulation of cell polarity and motility and the principles by which Ca(2+)-dependent transcription regulates lymphocyte function.
View Article and Find Full Text PDFThe cause of common polygenic autoimmune diseases is not understood because of genetic and cellular complexity. Here, we pinpoint the action of a subset of autoimmune susceptibility loci in the NOD mouse strain linked to D1mit181, D2mit490, D7mit101, and D15mit229, which cause a generalized resistance to thymic deletion in vivo that applies equally to Aire-induced organ-specific gene products in the thymic medulla and to systemic antigens expressed at high levels throughout the thymus and affects CD4(+), CD4(+)8(+), and CD4(+)25(+) thymocytes. Resistance to thymic deletion does not reflect a general deficit in TCR signaling to calcineurin- or ERK-induced genes, imbalance in constitutive regulators of apoptosis, nor excessive signaling to prosurvival genes but is distinguished by failure to induce the proapoptotic gene and protein, Bim, during in vivo encounter with high-avidity autoantigen.
View Article and Find Full Text PDFCD4+CD25+ regulatory T cells (Treg) acquire unique immunosuppressive properties while maintaining an anergy phenotype when activated in vitro under conditions that induce IL-2 production and proliferation in conventional CD4+ T cells. We investigated the mechanism underlying one component of this naturally anergic phenotype, the inability of the Treg cells to produce IL-2 following activation. Analysis of freshly isolated murine CD4+CD25+ Treg and conventional CD4+CD25- T cells following PMA/ionomycin stimulation demonstrated no differences in inducible AP-1 formation, an important transcriptional complex in regulating IL-2 gene expression.
View Article and Find Full Text PDF