The increasing use of chiral agrochemicals sold as racemic formulations raises concern for the negative impacts that inactive enantiomers can have on aquatic life and human health. The present work just focuses on the determination of ten chiral pesticides in river water samples by applying a ferrofluid-based microextraction followed by their stereoselective liquid chromatography analysis. To develop the ferrofluid, magnetite nanoparticles were prepared and coated with oleic acid and then dispersed in a hydrophobic natural deep eutectic solvent (NaDES), composed of L-menthol and thymol (1:1).
View Article and Find Full Text PDFNanocomposite microbeads (average diameter = 10-100 µm) were prepared by a microemulsion-solidification method and applied to the magnetic solid-phase extraction (m-SPE) of fourteen analytes, among pesticides, drugs, and hormones, from human urine samples. The microbeads, perfectly spherical in shape to maximize the surface contact with the analytes, were composed of magnetic nanoparticles dispersed in a polylactic acid (PLA) solid bulk, decorated with multi-walled carbon nanotubes (mPLA@MWCNTs). In particular, PLA was recovered from filters of smoked electronic cigarettes after an adequate cleaning protocol.
View Article and Find Full Text PDFIn this study, the attention was focused on quizalofop-ethyl, a chiral herbicide whose formulation has recently been marketed as quizalofop-P-ethyl, i.e. the (+)-enantiomer exhibiting herbicidal activity.
View Article and Find Full Text PDFCarbon nanomaterials (CNMs) have some excellent properties that make them ideal candidates as sorbents for solid-phase extraction (SPE). However, practical difficulties related to their handling (dispersion in the atmosphere, bundling phenomena, reduced adsorption capability, sorbent loss in cartridge/column format, etc.) have hindered their direct use for conventional SPE modes.
View Article and Find Full Text PDFAs many as 40% of all plant protection products currently used contain chiral active ingredients. Enantiomers of the same pesticide have identical physicochemical properties in an isotropic medium, but they may display different activity and toxicity because of their interaction with enzymes or other naturally occurring asymmetric molecules. This difference may also lead to variations in biotic degradation rates, making one enantiomer more persistent than the other in natural and agricultural environments.
View Article and Find Full Text PDFThe AuTi gaseous molecule was for the first time identified in vapors produced at high temperature from a gold-titanium alloy. The homogeneous equilibria AuTi(g) = Au(g) + Ti(g) (direct dissociation) and AuTi(g) + Au(g) = Au(g) + Ti(g) (isomolecular exchange) were studied by Knudsen effusion mass spectrometry in the temperature range 2111-2229 K. The so determined equilibrium constants were treated by the "third-law method" of thermodynamic analysis, integrated with theoretical calculations, and the dissociation energy at 0 K was derived as D (AuTi) = 241.
View Article and Find Full Text PDF