Publications by authors named "Elena Liyaskina"

Cellulose, the most abundant polymer on Earth, has been widely utilized in its nanoform due to its excellent properties, finding applications across various scientific fields. As the demand for nanocellulose continues to rise and its ease of use becomes apparent, there has been a significant increase in research publications centered on this biomaterial. Nanocellulose, in its different forms, has shown tremendous promise as a tissue engineered scaffold for regeneration and repair.

View Article and Find Full Text PDF

Recently, degradable biopolymers have become increasingly important as potential environmentally friendly biomaterials, providing a wide range of applications in various fields. Bacterial exopolysaccharides (EPSs) are biomacromolecules, which due to their unique properties have found applications in biomedicine, foodstuff, textiles, cosmetics, petroleum, pharmaceuticals, nanoelectronics, and environmental remediation. One of the important commercial polysaccharides produced on an industrial scale is xanthan.

View Article and Find Full Text PDF

Bacterial exopolysaccharides (EPS) are essential natural biopolymers used in different areas including biomedicine, food, cosmetic, petroleum, and pharmaceuticals and also in environmental remediation. The interest in them is primarily due to their unique structure and properties such as biocompatibility, biodegradability, higher purity, hydrophilic nature, anti-inflammatory, antioxidant, anti-cancer, antibacterial, and immune-modulating and prebiotic activities. The present review summarizes the current research progress on bacterial EPSs including their properties, biological functions, and promising applications in the various fields of science, industry, medicine, and technology, as well as characteristics and the isolation sources of EPSs-producing bacterial strains.

View Article and Find Full Text PDF

A soft synthesis of nanoceria with non-stoichiometric composition (33% Ce/67% Ce) named CeO NPs in bacterial cellulose (BC) matrix in the form of aerogel and hydrogel with controlled CeO NPs content was proposed. The advantage of CeO NPs synthesis in BC is the use of systemic antacid API-trisamine as a precursor, which did not destruct cellulose at room temperature and enabled a reduction in the duration of synthesis and the number of washes. Moreover, this method resulted in the subsequent uniform distribution of CeO NPs in the BC matrix due to cerium (III) nitrate sorption in the BC matrix.

View Article and Find Full Text PDF

Bacterial cellulose (BC) is currently one of the most popular environmentally friendly materials with unique structural and physicochemical properties for obtaining various functional materials for a wide range of applications. In this regard, the literature reporting on bacterial nanocellulose has increased exponentially in the past decade. Currently, extensive investigations aim at promoting the manufacturing of BC-based nanocomposites with other components such as nanoparticles, polymers, and biomolecules, and that will enable to develop of a wide range of materials with advanced and novel functionalities.

View Article and Find Full Text PDF

Paenibacillus spp. exopolysaccharides (EPSs) have become a growing interest recently as a source of biomaterials. In this study, we characterized Paenibacillus polymyxa 2020 strain, which produces a large quantity of EPS (up to 68 g/L),and was isolated from wasp honeycombs.

View Article and Find Full Text PDF

Currently, there is an increased demand for biodegradable materials in society due to growing environmental problems. Special attention is paid to bacterial cellulose, which, due to its unique properties, has great prospects for obtaining functional materials for a wide range of applications, including adsorbents. In this regard, the aim of this study was to obtain a biocomposite material with adsorption properties in relation to fluoride ions based on bacterial cellulose using a highly productive strain of H-110 on molasses medium.

View Article and Find Full Text PDF

A design of new nanocomposites of bacterial cellulose (BC) and betulin diphosphate (BDP) pre-impregnated into the surface of zinc oxide nanoparticles (ZnO NPs) for the production of wound dressings is proposed. The sizes of crystalline BC and ZnO NPs (5-25%) corresponded to 5-6 nm and 10-18 nm, respectively (powder X-ray diffractometry (PXRD), Fourier-infrared (FTIR), ultraviolet (UV), atomic absorption (AAS) and photoluminescence (PL) spectroscopies). The biological activity of the wound dressings "BC-ZnO NPs-BDP" was investigated in rats using a burn wound model.

View Article and Find Full Text PDF

Aerogels have gained significant interest in recent decades because of their unique properties such as high porosity, low density, high surface area, and excellent heat and noise insulation. However, their high cost and low mechanical strength limit their practical application. We developed appropriate conditions to produce aerogels with controlled density, high mechanical strength, and thermal characteristics from bacterial cellulose (BC) synthesized by the strain H-110.

View Article and Find Full Text PDF

To reduce the cost of obtaining bacterial cellulose, acidic by-products of the alcohol and dairy industries were used without any pretreatment or addition of other nitrogen sources. Studies have shown that the greatest accumulation of bacterial cellulose (6.19g/L) occurs on wheat thin stillage for 3 days of cultivation under dynamic conditions, which is almost 3 times higher than on standard Hestrin and Schramm medium (2.

View Article and Find Full Text PDF