Publications by authors named "Elena Langa"

There remains a need for new drug targets for treatment-resistant temporal lobe epilepsy. The ATP-gated P2X7 receptor coordinates neuroinflammatory responses to tissue injury. Previous studies in mice reported that the P2X7 receptor antagonist JNJ-47965567 suppressed spontaneous seizures in the intraamygdala kainic acid model of epilepsy and reduced attendant gliosis in the hippocampus.

View Article and Find Full Text PDF

MicroRNAs have emerged as important regulators of the gene expression landscape in temporal lobe epilepsy. The mechanisms that control microRNA levels and influence target choice remain, however, poorly understood. RNA editing is a post-transcriptional mechanism mediated by the adenosine acting on RNA (ADAR) family of proteins that introduces base modification that diversifies the gene expression landscape.

View Article and Find Full Text PDF

The diagnosis of epilepsy is complex and challenging and would benefit from the availability of molecular biomarkers, ideally measurable in a biofluid such as blood. Experimental and human epilepsy are associated with altered brain and blood levels of various microRNAs (miRNAs). Evidence is lacking, however, as to whether any of the circulating pool of miRNAs originates from the brain.

View Article and Find Full Text PDF

There remains an urgent need for new therapies for treatment-resistant epilepsy. Sodium channel blockers are effective for seizure control in common forms of epilepsy, but loss of sodium channel function underlies some genetic forms of epilepsy. Approaches that provide bidirectional control of sodium channel expression are needed.

View Article and Find Full Text PDF

Dravet syndrome (DS) is a catastrophic form of pediatric epilepsy mainly caused by noninherited mutations in the gene. DS patients suffer severe and life-threatening focal and generalized seizures which are often refractory to available anti-seizure medication. Antisense oligonucleotides (ASOs) based approaches may offer treatment opportunities in DS.

View Article and Find Full Text PDF

Antisense inhibition of microRNAs is an emerging preclinical approach to pharmacoresistant epilepsy. A leading candidate is an "antimiR" targeting microRNA-134 (ant-134), but testing to date has used rodent models. Here, we develop an antimiR testing platform in human brain tissue sections.

View Article and Find Full Text PDF

Angelman syndrome (AS) is a severe neurodevelopmental disorder featuring ataxia, cognitive impairment, and drug-resistant epilepsy. AS is caused by mutations or deletion of the maternal copy of the paternally imprinted gene, with current precision therapy approaches focusing on re-expression of . Certain phenotypes, however, are difficult to rescue beyond early development.

View Article and Find Full Text PDF

MicroRNAs are short non-coding RNAs that negatively regulate protein levels and perform important roles in establishing and maintaining neuronal network function. Previous studies in adult rodents have detected upregulation of microRNA-134 after prolonged seizures (status epilepticus) and demonstrated that silencing microRNA-134 using antisense oligonucleotides, termed antagomirs, has potent and long-lasting seizure-suppressive effects. Here we investigated whether targeting microRNA-134 can reduce or delay acute seizures in the immature brain.

View Article and Find Full Text PDF

MicroRNAs perform important roles in the post-transcriptional regulation of gene expression. Sequencing as well as functional studies using antisense oligonucleotides indicate important roles for microRNAs during the development of epilepsy through targeting transcripts involved in neuronal structure, gliosis and inflammation. MicroRNA-22 (miR-22) has been reported to protect against the development of epileptogenic brain networks through suppression of neuroinflammatory signalling.

View Article and Find Full Text PDF

Temporal lobe epilepsy is the most common drug-resistant form of epilepsy in adults. The reorganization of neural networks and the gene expression landscape underlying pathophysiologic network behavior in brain structures such as the hippocampus has been suggested to be controlled, in part, by microRNAs. To systematically assess their significance, we sequenced Argonaute-loaded microRNAs to define functionally engaged microRNAs in the hippocampus of three different animal models in two species and at six time points between the initial precipitating insult through to the establishment of chronic epilepsy.

View Article and Find Full Text PDF

Repetitive or prolonged seizures (status epilepticus) can damage neurons within the hippocampus, trigger gliosis, and generate an enduring state of hyperexcitability. Recent studies have suggested that microvesicles including exosomes are released from brain cells following stimulation and tissue injury, conveying contents between cells including microRNAs (miRNAs). Here, we characterized the effects of experimental status epilepticus on the expression of exosome biosynthesis components and analyzed miRNA content in exosome-enriched fractions.

View Article and Find Full Text PDF

Several members of the Bcl-2 gene family are dysregulated in human temporal lobe epilepsy and animal studies show that genetic deletion of some of these proteins influence electrographic seizure responses to chemoconvulsants and associated brain damage. The BH3-only proteins form a subgroup comprising direct activators of Bax-Bak that are potently proapoptotic and a number of weaker proapoptotic BH3-only proteins that act as sensitizers by neutralization of antiapoptotic Bcl-2 family members. Noxa was originally characterized as a weaker proapoptotic, 'sensitizer' BH3-only protein, although recent evidence suggests it too may be potently proapoptotic.

View Article and Find Full Text PDF

Animal models of status epilepticus are important tools to understand the pathogenesis of epileptic brain injury and evaluate potential seizure-suppressive, neuroprotective, and antiepileptogenic treatments. Focal elicitation of status epilepticus by intraamygdala kainic acid in mice produces unilateral hippocampal damage and the emergence of spontaneous recurrent seizures after a short latent period. The model has been characterized in C57BL/6, BALB/c, and SJL mice where strain-specific differences were found in the extent of hippocampal damage.

View Article and Find Full Text PDF

The ATP-gated ionotropic P2X7 receptor (P2X7R) modulates glial activation, cytokine production and neurotransmitter release following brain injury. Levels of the P2X7R are increased in experimental and human epilepsy but the mechanisms controlling P2X7R expression remain poorly understood. Here we investigated P2X7R responses after focal-onset status epilepticus in mice, comparing changes in the damaged, ipsilateral hippocampus to the spared, contralateral hippocampus.

View Article and Find Full Text PDF

The C/EBP homologous protein CHOP is normally present at low levels in cells but increases rapidly after insults such as DNA damage or endoplasmatic reticulum stress where it contributes to cellular homeostasis and apoptosis. By forming heterodimers with other transcription factors, CHOP can either act as a dominant-negative regulator of gene expression or to induce the expression of target genes. Recent work demonstrated that seizure-induced hippocampal damage is significantly worse in mice lacking CHOP and these animals go on to develop an aggravated epileptic phenotype.

View Article and Find Full Text PDF

We modified tau protein with boronic acid to facilitate its delivery into non neural or neural cultured cells lacking tau protein. Our results indicate that the incorporated tau promotes the formation of cytoplasmic extensions in non-neuronal cells, as well as the appearance of neurites in cultured tau knockout hippocampal neurons. In addition, boronated tau is incorporated into hippocampal neurons of tau knockout mice after intracranial injection in vivo.

View Article and Find Full Text PDF

Although human olfactory mucosa derived cells (OMC) have been used in animal models and clinical trials with CNS repair purposes, the exact identity of these cells in culture with respect to their tissue of origin is not fully understood and their neuroregenerative capacity in vitro has not yet been demonstrated. In this study we have compared human OMC with human ensheathing glia from olfactory bulb (OB) and human fibroblasts from skin and lung. Our results indicate that these different cultured cell types exhibit considerable overlap of antigenic markers such that it is presently not possible to distinguish them immunocytochemically.

View Article and Find Full Text PDF

Dephosphorylation of phospho GSK3 isoforms, from COS-7 cells, was determined in vitro and in cultured cells in the absence or the presence of okadaic acid and lithium. Our results indicate a preferential dephosphorylation of phospho GSK3α by PP2A phosphatase, whereas dephosphorylation of phospho GSK3β mainly takes place by PP1 phosphatase.

View Article and Find Full Text PDF

Reversible immortalization holds great potential for primary tissue expansion to develop cell-based therapies as well as for basic research. Human olfactory ensheathing glia (hOEG) are promising candidates for treating spinal cord injury and for studying extrinsic neuroregenerative mechanisms. We used lentivectors with Cre/loxP technology to achieve reversible gene transfer of BMI1, SV40 large T antigen (TAg), a short hairpin RNA against p53 (shp53), and the catalytic subunit of telomerase (TERT) in primary cultures of hOEG from human donor cadaver olfactory bulbs.

View Article and Find Full Text PDF